
Document Number: D2565R0
Date: 2022-03-15

Reply-to: Bret Brown <bbrown105@bloomberg.com>
Audience: SG-15

Supporting User-Defined Attributes

Contents

Abstract 2

Standard Attributes 2

Misspelling Attributes 2

User-Defined Attributes 3

Vendor-Specific Attributes 4

Impact 6
Use of Preprocessor to Work Around Limitations 6
Vendor-Specific Attributes Effectively Not Portable 6
Limitations to Tool Designs 7

Recommendations 7
Preserve warnings on unknown attributes 7
New syntax for declaring attributes 7
Alternatives 8

Future Work 8
Standard Attribute Declaration Header(s) 8
Validation of Attribute Parameters 8

References 9

Abstract

While the standard supports vendor-provided and otherwise user-defined attributes in
C++, actual use of nonstandard attributes while preventing trivial misspellings is a
challenge. In particular, diagnostics in compilers used to prevent misspellings of
standard and well-known attributes will reject attributes provided for other contexts,
including attributes used to support other compilers. This document explores how this
problem presents itself in practice and proposes a potential attribute declaration syntax
to address the problem.

Standard Attributes

Standard attributes should, and generally do, work as expected on all toolchains that
fully support C++14. For example:

[[deprecated("Broken. Use `alpha`.")]]
double apple(double num);

Misspelling Attributes

It's beneficial and common to provide diagnostics in the case that the intention of
relevant C++ code is to use a standard attribute but a typing mistake is introduced
instead:

[[edprecated("Broken. Use `bravo`.")]]
double banana(double num);

Major compilers all correctly identify edprecated as an incorrect attribute with some
combination of warnings flags.

Clang 13.0.1 Diagnostic

<source>:6:4: warning: unknown attribute 'edprecated' ignored
[-Wunknown-attributes]
[[edprecated("Broken. Use `bravo`.")]]

^~~~~~~~~~

GNU 11.2 Diagnostic

<source>:7:25: warning: 'edprecated' attribute directive ignored [-Wattributes]
7 | double banana(double num);
|

MSVC v19.30 Diagnostic

<source>(6): warning C5030: attribute 'edprecated' is not recognized

User-Defined Attributes

For the purposes of illustration, let's say we wanted a more featureful deprecation.
Perhaps we would like to associate a severity with each deprecation to provide some
flexibility for consumers. Let's accomplish that by creating a user-defined attribute that
adds a second deprecation field -- a string representing severity. Valid values would
include: "off", "warn", and "error".

It could look like so:

[[bespoke::deprecated("Broken. Use `charlie`.", "warn")]]
double carrot(double num);

Custom attributes like these are supported by the standard and should be fully accepted
by all tools. This includes issuing no warnings and no errors against the custom
attribute. Quoting the standard: “For an attribute-token (including an
attribute-scoped-token) not specified in this document, the behavior is
implementation-defined. Any attribute-token that is not recognized by the
implementation is ignored.” [§9.12.1.6].

Instead, vendors usually consider this to be a diagnosable event. For instance:

Clang 13.0.1 Diagnostic

<source>:9:4: warning: unknown attribute 'deprecated' ignored
[-Wunknown-attributes]
[[bespoke::deprecated("Broken. Use `charlie`.", "warn")]]

^~~~~~~~~~~~~~~~~~~>

GNU 11.2 Diagnostic

<source>:10:25: warning: 'bespoke::deprecated' scoped attribute directive
ignored [-Wattributes]

10 | double carrot(double num);
|

MSVC v19.30 Diagnostic

<source>(9): warning C5030: attribute 'bespoke::deprecated' is not recognized

Vendor-Specific Attributes

In the same way, vendors such as compilers are allowed to define their own attributes.
As far as the C++ standard is concerned, this use case is the same as the previous one,
but the implications in this case are distinct, so it's worth explaining this as an interesting
use case compared to “user-defined attributes”.

[[clang::no_sanitize("undefined")]]
[[gnu::access(read_only, 1)]]
[[msvc::known_semantics]]
double daikon(double num);

Vendor-specific attributes like these are supported by the standard and should be fully
accepted by all tools. This includes issuing no warnings and no errors against the
vendor-specific attributes.

Again, vendors usually consider these attributes to be diagnosable events except that
they recognize their own attributes. Clang gets a notable exception for supporting many
attributes from other toolchain providers, but there are attributes from other vendors that
are not supported, at least not yet. And, to extrapolate into the future, it's safe to say
that current versions of Clang do not support vendor-specific attributes that have not
been invented yet, including future Clang-specific attributes.

Clang 13.0.1 Diagnostic

<source>:13:4: warning: unknown attribute 'access' ignored
[-Wunknown-attributes]
[[gnu::access(read_only, 1)]]

^~~~~~~~~~~
<source>:14:4: warning: unknown attribute 'known_semantics' ignored
[-Wunknown-attributes]
[[msvc::known_semantics]]

^~~~~~~~~~~~~~~~~~~~~

GNU 11.2 Diagnostic

<source>:15:21: warning: 'clang::no_sanitize' scoped attribute directive
ignored [-Wattributes]

15 | int* daikon(int* num);
| ^

<source>:15:21: warning: 'msvc::known_semantics' scoped attribute directive
ignored [-Wattributes]
Compiler returned: 0

MSVC v19.30 Diagnostic

<source>(12): warning C5030: attribute 'clang::no_sanitize' is not recognized
<source>(13): warning C5030: attribute 'gnu::access' is not recognized

Impact

Use of Preprocessor to Work Around Limitations
It is common in cross-platform code to still use preprocessor macros to wrap
vendor-specific and user defined attributes, including preprocessor conditionals and
feature testing logic. This pattern seems to be commonplace enough to be nearly
universally adopted. For instance, both MSVC and Clang support the gsl::suppress
attribute, but GCC and other tools do not, so the following code exists in the gsl library:

//
// make suppress attributes parse for some compilers
// Hopefully temporary until suppression standardization occurs
//
#if defined(__clang__)
#define GSL_SUPPRESS(x) [[gsl::suppress("x")]]
#else
#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
#define GSL_SUPPRESS(x) [[gsl::suppress(x)]]
#else
#define GSL_SUPPRESS(x)
#endif // _MSC_VER
#endif // __clang__

Source:
https://github.com/microsoft/GSL/blob/b26f6d5ec7b043f9d459c1dfdd6da4d930d4e9b4/i
nclude/gsl/assert#L44-L56

Note that, as of that commit, standard attributes like [[noreturn]] are in use, so
presumably the macros are not for compatibility modes for C++ versions previous to
C++11.

Vendor-Specific Attributes Effectively Not Portable
The implication of widespread preprocessor wrapping logic is that vendor-defined
attributes are not working as originally intended.

https://github.com/microsoft/GSL/blob/b26f6d5ec7b043f9d459c1dfdd6da4d930d4e9b4/include/gsl/assert#L44-L56
https://github.com/microsoft/GSL/blob/b26f6d5ec7b043f9d459c1dfdd6da4d930d4e9b4/include/gsl/assert#L44-L56

Limitations to Tool Designs
Other "vendors" that would be interested in supporting custom attributes include:

● analysis tools
○ static analysis tools
○ instrumentation tools

● code generation tools
○ serialization frameworks
○ dependency injection frameworks
○ tools that provide bindings between C++ and other languages

● projects researching proposals for new standard attributes

There are probably other use cases as well, but requiring preprocessor macros or
cross-toolchain support for specific attributes is undesirable for these use cases,
especially for projects without the expertise or resources to coordinate with multiple
toolchain providers.

Recommendations

Preserve warnings on unknown attributes
The current behaviors of the compiler have an important advantage in which they detect
typos in the use of attributes. Therefore this paper recommends that compilers continue
to issue warnings on unknown attributes.

New syntax for declaring attributes
In order to remove the need to wrap the use of attributes in preprocessor macros, this
paper proposes a new syntax to declare attributes that may be unknown to the compiler.
This is in line with a recent change in GCC, which allows the declaration of a pragma to
silence warnings on specific attributes that are intentionally used in the code.

This would, therefore, introduce a standard syntax for indicating that the usage of an
unknown attribute is not the result of a typography error. For instance:

[[extern gnu::access(...)]];

This mechanism would support providing these declarations in header files in relevant
libraries. It would also be available in the cases where such headers do not exist and
instead libraries could use these declarations to suppress diagnostics.

Alternatives
Alternatives are possible and could be investigated, including metadata files to be
packaged with relevant projects like gsl to declare the existence of vendor-specific
attributes for the benefit of various tools that diagnose C++ code, including compilers.

Future Work

Standard Attribute Declaration Header(s)
It could be interesting to consider a <stdattrib> header to provide declarations for
standard attributes like std::deprecated. Note that, even if such a facility was
interesting, it would not be sufficient to resolve the problems described in this paper. In
particular, older releases of compilers would not be aware of future standard attributes.
In those cases, some way to declare that attribute as valid would be needed or else
users will likely turn to nonstandard mechanisms like backward compatibility
preprocessor macros.

Validation of Attribute Parameters
Validation of parameters to standard attributes is possible on a per-attribute basis as the
standard can clearly define what parameters are valid. This paper does not attempt to
define interesting parameter definitions in the interest of supporting parameter
validation. It could be an interesting future paper to add this ability. In the meantime, the
tools that do support the user-defined attributes should provide validation of the number
and types of parameters provided to the user-defined attribute.

References

Examples in Compiler Explorer

https://godbolt.org/z/9451YPeT5

GCC Issue for Supporting Bespoke Attribute Scopes and -Wattributes

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101940

Original Paper on C++ Attributes

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf

clang::no_sanitize Documentation

https://clang.llvm.org/docs/AttributeReference.html#no-sanitize

gnu::deprecated Documentation

https://gcc.gnu.org/onlinedocs/gcc-11.2.0/gcc/Common-Function-Attributes.html

gsl::suppress Documentation

https://docs.microsoft.com/en-us/cpp/cpp/attributes?view=msvc-170#microsoft-specific-
attributes

https://godbolt.org/z/9451YPeT5
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101940
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf
https://clang.llvm.org/docs/AttributeReference.html#no-sanitize
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/gcc/Common-Function-Attributes.html
https://docs.microsoft.com/en-us/cpp/cpp/attributes?view=msvc-170#microsoft-specific-attributes
https://docs.microsoft.com/en-us/cpp/cpp/attributes?view=msvc-170#microsoft-specific-attributes

