
Relax requirements on wchar_t to match existing practices
Document #: P2460R2
Date: 2022-07-15
Programming Language C++
Audience: SG-22, LWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Target

C++23

Abstract

We propose to remove the constraints put on the encoding associated with wchar_t in the
core wording.

Revisions

R2

• Reformulation of the library section.

R1

• Rebase and cleanup the wording.

Motivation

The standard claims that wchar_t should encode all characters of all wide encoding as a single
code unit. This does not match existing practices, as wchar_t denotes UTF-16 on Windows.
The Windows Documentation states:

Windows represents Unicode characters using UTF-16 encoding, in which
each character is encoded as a 16-bit value. UTF-16 characters are called wide
characters, to distinguish them from 8-bit ANSI characters. The Visual C++
compiler supports the built-in data type wchar_t for wide characters.

This is not merely an issue of MSVC being none conforming. It makes C++ unsuitable for
development on a widely deployed operating system.

1

mailto:corentin.jabot@gmail.com
https://docs.microsoft.com/en-us/windows/win32/learnwin32/working-with-strings


ISO 10646 also mentions:

NOTE – Former editions of this document included references to a two-octet
BMP form called UCS-2 which would be a subset of the UTF-16 encoding form
restricted to the BMP UCS scalar values. The UCS-2 form is deprecated.

Moreover, the requirement that ”the values of type wchar_t can represent distinct codes for
all members of the largest extended character set specified among the supported locales”
also precludes any 2 bytes encodings (including UCS2), if (one of) the execution character set
is UTF-8, as not all Unicode codepoints (21 bits) are representable in a single 2 bytes wchar_t.

Instead of stating Windows, and environments where UTF-8 is used are non-conforming,
which is not useful to users, we propose to remove the constraint from the core wording.

However, we cannot change the wide functions, both for API/ABI reasons, because they are
controlled by C, and at best, this requires complex surgery.

Instead, we move the constraints from the type of wchar_t to the constraints of the execution
encoding, as defined by P2314R3 [1].

Previous discussions can be found in this SG-16 issue.

Behavior changes

This paper makes UTF-16 in wide literals well-formed. This does not affect implementations
that were already accepting them [Compiler Explorer]. This paper is therefore standardizing
standard practices.

What about the library?

Still the status quo. Further work is needed there.

C compat

C has the same wording.

wide character
value representable by an object of type wchar_t, capable of representing any
character in the current locale

C should consider adopting a similar resolution, however, the proposed change has no impact
on C compatibility. (we are removing a constraint).

2

https://wg21.link/P2314R3
https://github.com/sg16-unicode/sg16/issues/9
https://godbolt.org/z/cPe69bshM


Previous polls

SG16 POLL: Add expanded motivation to D2460R0 and forward the paper so
revised to EWG with a recommended ship vehicle of C++23.
SF F N A SA

5 3 1 0 0

Wording

[Editor’s note: Modify [basic.fundamental] p8 as follow:]

Type wchar_t is a distinct type that has an implementation-defined signed or unsigned integer
type as its underlying type. The values of type wchar_t can represent distinct codes for all
members of the largest extended character set specified among the supported locales.

[Editor’s note: Change 16.3.3.3.5.1 [character.seq.general] paragraph 1.]

The C standard library makes widespread use of characters and character sequences that
follow a few uniform conventions:

• Properties specified as locale-specific may change during program execution by a call to
setlocale(int, const char*) (28.5.1 [clocale.syn]), or by a change to a locale object, as
described in 28.3 [locales] and Clause 29 [input.output].

• The execution character set and the execution wide-character set are supersets of the
basic literal character set (5.3 [lex.charset]). The encodings of the execution character
sets and the sets of additional elements (if any) are locale-specific. Each element of the
execution wide-character set is encoded as a single code unit representable by a value
of type wchar_t.

[Note: The encoding of the execution character sets can be unrelated to any literal
encoding. —end note ]

• A letter is any of the 26 lowercase or 26 uppercase letters in the basic execution character
set.

• The decimal-point character is the locale-specific (single-byte) character used by functions
that convert between a (single-byte) character sequence and a value of one of the floating-
point types. It is used in the character sequence to denote the beginning of a fractional
part.It is represented in [support] through [thread] and [depr], ’.’, which is also its value
in the ”C” locale.

Acknowledgment

Thanks to SG-16 for their feedback on this paper, notably Hubert Tong for mentioning that
even UCS-2 does not always satisfy the core wording requirements.

3



References

[1] Jens Maurer. P2314R3: Character sets and encodings. https://wg21.link/p2314r3, 9 2021.

[N4885] Thomas Köppe Working Draft, Standard for Programming Language C++
https://wg21.link/N4885

4

https://wg21.link/p2314r3
https://wg21.link/N4885

	1 Target
	2 Abstract
	3 Revisions
	3.1 R2
	3.2 R1

	4 Motivation
	5 Behavior changes
	5.1 What about the library?
	5.2 C compat

	6 Previous polls
	7 Wording
	8 Acknowledgment

