
Whitespaces Wording Revamp
Document #: P2348R3
Date: 2022-09-11
Programming Language C++
Audience: EWG, CWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Revisions

Revision 3

• Fix an example which was accidentally normative

• remplace ”non-whitespace character” by non-whitespace

• typos

• ”Whitespace characters can appear within a preprocessing token only as part of a header
name...” is now a note

• Rebase [cpp] on top of P2334R1 [1]

• Rebase [lex.phases] on top of P2223R2 [2]

• Rebase [lex.phases] on top of P2314R4 [6]

Revision 2

• Wording fixes

Revision 1

• The previous revisions classified Vertical Tab and Form Feed as vertical spaces. This was
consistent with Unicode, but not with the current wording, nor with any of the existing
implementations. As this paper is trying not to modify the status quo, and because
the author cannot find a reason to challenge the status quo, this version treats these
codepoints as horizontal whitespaces.

• Add a note about \n\r and other not spelled-out sequences.

• Align the grammar in [lex.whitespaces] with terminology used in P2314R2 [5] and rebase
the rest of the wording on top of P2314R2 [5].

1

mailto:corentin.jabot@gmail.com
https://wg21.link/P2334R1
https://wg21.link/P2223R2
https://wg21.link/P2314R4
https://wg21.link/P2314R2
https://wg21.link/P2314R2

Design

This paper aims to clarify what constitutes a new-line and a whitespace, using Unicode
terminology (which is consistent with P2314R1 [4]). No breaking behavior change is intended.

This paper resolves CWG2002 [9] and CWG1655 [7].

Make whitespace grammar elements

For clarity, this paper introduces a grammar for whitespaces, including comments, and
then refers to whitespace as grammar terms. This also makes it easier to extend the list of
whitespaces later. However, the question of extending the list of Unicode characters treated
as whitespace is not explored in this paper. Non-Unicode source encoding would continue to
map their set of whitespaces and new-line to what is currently designated in the standard:
CR, FF, LF, VT, SPACE, TAB.

Comments

The proposed wording change makes vertical tabs and form-feed allowed in // comments,
rather than make them ill-formed no diagnostic required.

VT and FF are treated as horizontal whitespaces

In R0, VT FF were treated as vertical, line-breaking whitespaces. This was consistent with
Unicode. However, I failed to realize that all implementations treat them as non-breaking
whitespaces. As this paper is not trying to challenge the status quo, which frankly would
have little value, it classifies VT and FF as horizontal whitespaces. As such, an implementa-
tion must support them in comments and string/character literals, which is consistent with
implementations.

Compiler explorer.

Despite the contradition with Unicode, further research showed that treating vertical space
and form feed is standard practice in many languages including C#, Rust, Java, JavaScript and
others.

\n\r

On BBC Micro and other Acorn systems, \n\r was used to delimited new lines. Similarly, some
systems may not use any of the sequences for new lines outlined in this paper. This is consis-
tent with both the status quo and Unicode. Assuming once could run a modern compiler on a
BBCmicro (note that this proposal only affects translation, not execution), the implementation-
defined mapping provision allows an implementation to map platform/encoding specific line
breaks to \n in phase 1 of translation.

Similarly, while this paper tries to preserve sequences of line breaks through phases 1-6
of translation, it is not observable whether a sequence of line breaks is treated as one or

2

https://wg21.link/P2314R1
https://wg21.link/CWG2002
https://wg21.link/CWG1655
https://compiler-explorer.com/z/9ahz7W7xc

several line-breaks except in the value of __LINE__ and source_location whose values are
implementation-defined

Replace the term new-line by line-break

new-line in the wording refers to both an unspecified character to which all source line
terminator map to and a specific, implementation-defined character in the literal character
set. Using different terminology makes it clearer which is which.

Do not perform whitespace replacement

All whitespaces (including comments) are conserved by the proposed wording through phases
1-7. In practice, this is not observable (and we may want a note stating that somewhere).

Note that some compilers (namely GCC) will emit a diagnostic for the presence of vertical tabs
in preprocessing directives. With this, such diagnostic in pedantic mode is not necessary for
conformance, but might still be useful [Compiler Explorer].

This fixes CWG2002 [9].

According to Clause 15 [cpp] paragraphg 4,

The only whitespace characters that shall appear between
preprocessing tokens within a preprocessing directive (from
just after the introducing # preprocessing token through just
before the terminating new-line character) are space and
horizontal-tab (including spaces that have replaced comments
or possibly other whitespace characters in translation phase
3).

The effect of this restriction is unclear, however, since translation phase 3 is
permitted to transform all white space characters and comments into spaces.
The relationship between these two rules should be clarified.

The list of whitespaces is sufficient to address the needs of codepoints conservations through
phases 1-6 of P2295R2 [3]. The clause mentioned in CWG2002 is deleted.

The set of character is not expanded

We do not propose new characters as whitespaces. However, following Unicode guidelines,
we clarify that CRLF is to be considered a single line break.

Raw-string literals

For clarity, that line-breaks are mapped to a new-line in raw-string-literal is made normative.
We intend that this paper addresses CWG1655 [7]: by using different terms for line-break and
new-line, we make clear that these things are not related.

3

https://godbolt.org/z/r8hdzM6Gx
https://wg21.link/CWG2002
https://wg21.link/P2295R2
https://wg21.link/CWG1655

Wording

�? Phases of translation [lex.phases]

[Editor’s note: The wording is based on P2314R2 [5]]

The precedence among the syntax rules of translation is specified by the following phases.

1. Physical source file characters are mapped, in an implementation-defined manner, to
the translation character set (introducing new-line characters for end-of-line indicators)
Thephysical source file ismapped, in an implementation-definedmanner, to a sequence
of translation character set elements.

[Editor’s note: The intent of this reformulation is to get rid of the term ”end-of-line-
indicator” which is not defined, while supporting source files stored as records.]

The set of physical source file characters accepted is implementation-defined.

2. Each sequence of a backslash character (\) immediately followed by zero or more
whitespace characters other than new-line horizontal-whitespace-characters followed by
a new-line character line-break is deleted, splicing physical source lines to form logical
source lines. Only the last backslash on any physical source line shall be eligible for being
part of such a splice. Except for splices reverted in a raw string literal, if a splice results in
a character sequence that matches the syntax of a universal-character-name, the behavior
is undefined. A source file that is not empty and that does not end in a splice, shall be
processed as if an additional new-line character line-break were appended to the file.

3. The source file is decomposed into preprocessing tokens and sequences of whitespace
characters (including comments) whitespaces. A source file shall not end in a partial pre-
processing token or in a partial comment. Each comment is replaced by one space
character. New-line characters are retained. Whether each nonempty sequence of
whitespace characters other thannew-line is retainedor replacedbyone space character
is unspecified. As characters from the source file are consumed to form the next pre-
processing token (i.e., not being consumed as part of a comment or other forms of
whitespacewhitespace), exceptwhenmatching a c-char-sequence, s-char-sequence, r-char-
sequence, h-char-sequence, or q-char-sequence, universal-character-names are recognized
and replaced by the designated element of the translation character set. The process
of dividing a source file’s characters into preprocessing tokens is context-dependent.
[Example: See the handling of < within a #include preprocessing directive. —end exam-
ple]

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma
unary operator expressions are executed. If a character sequence that matches the
syntax of a universal-character-name is produced by token concatenation, the behavior is
undefined. A #include preprocessing directive causes the named header or source file
to be processed from phase 1 through phase 4, recursively. All preprocessing directives
are then deleted.

5. Each basic-c-char, basic-s-char, and r-char in a character-literal or a string-literal, as well

4

https://wg21.link/P2314R2

as each escape-sequence and universal-character-name in a character-literal or a non-raw
string literal, is encoded in the literal’s associated character encoding as specified in ??
and ??.

6. Adjacent string-literal s are concatenated and a null character is appended to the result
as specified in ??.

7. TheWhitespace characterswhitespaces separating tokens are no longer significant. Each
preprocessing token is converted into a token. The resulting tokens are syntactically
and semantically analyzed and translated as a translation unit. [Note: The process of
analyzing and translating the tokens can occasionally result in one token being replaced
by a sequence of other tokens. —end note] It is implementation-defined whether
the sources for module units and header units on which the current translation unit
has an interface dependency (??, ??) are required to be available. [Note: Source files,
translation units and translated translation units need not necessarily be stored as
files, nor need there be any one-to-one correspondence between these entities and any
external representation. The description is conceptual only, and does not specify any
particular implementation. —end note]

�? Preprocessing tokens [lex.pptoken]

preprocessing-token:
header-name
import-keyword
module-keyword
export-keyword
identifier
pp-number
character-literal
user-defined-character-literal
string-literal
user-defined-string-literal
preprocessing-op-or-punc
each non-whitespace character character that is not part of a whitespace and
cannot be is not part of one of the above

Each preprocessing token that is converted to a token shall have the lexical form of a keyword,
an identifier, a literal, or an operator or punctuator.

A preprocessing token is the minimal lexical element of the language in translation phases 3
through 6. In this document, glyphs are used to identify elements of the basic character set
([lex.charset]) The categories of preprocessing token are: header names, placeholder tokens
produced by preprocessing import and module directives (import-keyword,module-keyword, and
export-keyword), identifiers, preprocessing numbers, character literals (including user-defined
character literals), string literals (including user-defined string literals), preprocessing opera-
tors and punctuators, and single non-whitespace characters whitespace that do not lexically
match the other preprocessing token categories. If a U+0027 APOSTROPHE or a U+0022
QUOTATION MARK character matches the last category, the behavior is undefined. Prepro-

5

cessing tokens can be separated by whitespace; whitespaces. this consists of comments, or
whitespace characters (U+0020 SPACE, U+0009 CHARACTER TABULATION, new-line, U+000B
LINE TABULATION, and U+000C FORM FEED), or both. As described in [cpp], in certain circum-
stances during translation phase 4, whitespace whitespaces (or the absence thereof) serves
as more than preprocessing token separation.

[Note:

Whitespace whitespaces and other whitespace characters can appear within a preprocessing
token only as part of a header name or between the quotation characters in a character literal
or string literal

–end note].

[Editor’s note: ”Whitespace characters” is intentional here: thismay refer to unicode characters
not considered whitespaces for the purpose of lexing, and do not refer to elements used to
separate tokens.]

�? Tokens [lex.token]

token:
identifier
keyword
literal
operator-or-punctuator

There are five kinds of tokens: identifiers, keywords, literals,operators, and other separators.

[Editor’s note: This is somewhat of a drive-by partial fix of CWG1901 [8]. However the use of
”separator” is somewhat misleading here. Was it meant to bemean whitespace? The following
sentence is explicitely stating that whitespace are not tokens.]

Blanks, horizontal and vertical tabs, new-lines, form-feeds, and comments (collectively, “whites-
pace”), as described below, are ignored except as they serve to separate tokens. [Note:
Some whitespace whitespace is required to separate otherwise adjacent identifiers, keywords,
numeric literals, and alternative tokens containing alphabetic characters. —end note]

�? Whitespaces [lex.whitespaces]

whitespace:
horizontal-whitespace
line-break

horizontal-whitespace:
horizontal-whitespace-character
comment

6

https://wg21.link/CWG1901

comment:
single-line-comment
multi-line-comment

single-line-comment:
//
single-line-comment single-line-comment-elem

single-line-comment-elem:
any member of the translation character set except line-break-character

multi-line-comment:
/*multi-line-comment-elem-seqopt */

multi-line-comment-elem-seq:
multi-line-comment-elem
multi-line-comment-elem-seq multi-line-comment-elem

multi-line-comment-elem:
any member of the translation character set except * immediately followed by /

line-break:
line-break-character
U+000D CARRIAGE RETURN immediately followed by U+000A LINE FEED

line-break-character:
U+000A LINE FEED
U+000D CARRIAGE RETURN

horizontal-whitespace-character:
U+0009 HORIZONTAL TAB
U+000C FORM FEED
U+000B VERTICAL TAB
U+0020 SPACE

A whitespace is the longest sequence of characters that could constitute a whitespace.

[Note: The comment characters //, /*, and */ have no special meaning within a // comment
and are treated just like other characters. Similarly, the comment characters // and /* have
no special meaning within a /* comment. —end note]

�? Comments [lex.comment]

The characters /* start a comment, which terminates with the characters */. The characters
// start a comment, which terminates immediately before the next new-line character. If
there is a form-feed or a vertical-tab character in such a comment, onlywhitespace characters
shall appear between it and the new-line that terminates the comment; no diagnostic is
required. [Note: The comment characters //, /*, and */ have no special meaning within a //

7

comment and are treated just like other characters. Similarly, the comment characters // and
/* have no special meaning within a /* comment. —end note]

�? Header names [lex.header]

header-name:
< h-char-sequence >
" q-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except new-line line-break-character
and >

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member of the source character set except new-line line-break-character
and "

[Note: Header name preprocessing tokens only appear within a #include preprocessing
directive, a __has_include preprocessing expression, or after certain occurrences of an import
token (see ??). —end note] The sequences in both forms of header-names are mapped in
an implementation-defined manner to headers or to external source file names as specified
in ??.

The appearance of either of the characters ' or \ or of either of the character sequences /* or
// in a q-char-sequence or an h-char-sequence is conditionally-supported with implementation-
defined semantics, as is the appearance of the character " in an h-char-sequence.

�? Character literals [lex.ccon]

character-literal:
encoding-prefixopt ' c-char-sequence '

encoding-prefix: one of
u8 u U L

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
basic-c-char
escape-sequence
universal-character-name

basic-c-char:
any member of the basic source character set except the single-quote ', back-
slash \, or any character that matches new-line character line-break-character

8

escape-sequence:
simple-escape-sequence
numeric-escape-sequence
conditional-escape-sequence

simple-escape-sequence:
\ simple-escape-sequence-char

simple-escape-sequence-char: one of
' " ? \ a b f n r t v

numeric-escape-sequence:
octal-escape-sequence
hexadecimal-escape-sequence

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

conditional-escape-sequence:
\ conditional-escape-sequence-char

conditional-escape-sequence-char:
any member of the basic source character set that is not an octal-digit, a simple-
escape-sequence-char, or the characters u, U, or x

//...

The character specified by a simple-escape-sequence is specified in . [Note: Using an escape
sequence for a question mark is supported for compatibility with ISO C++ 2014 and ISO C.
—end note]

Table 1: Simple escape sequences
new-line NL(LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark ? \?
single quote ' \'
double quote " \"

9

�? String literals [lex.string]

string-literal:
encoding-prefixopt " s-char-sequenceopt "
encoding-prefixopt R raw-string

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
basic-s-char
escape-sequence
universal-character-name

basic-s-char:
anymember of the translation character set except the double-quote ", backslash
\, or any character that matches new-line character line-break-character

raw-string:
" d-char-sequenceopt (r-char-sequenceopt) d-char-sequenceopt "

r-char-sequence:
r-char
r-char-sequence r-char

r-char:
any member of the source character set, except a right parenthesis) followed
by

the initial d-char-sequence (which may be empty) followed by a double
quote ".

d-char-sequence:
d-char
d-char-sequence d-char

d-char:
any member of the basic source character set except:
space any charachter that matches horizontal-whitespace-character,
or new-line character line-break-character, the left parenthesis (, the right paren-
thesis), the backslash \ , and the control characters
representing horizontal tab, vertical tab, form feed, and newline.

A string-literal that has an R in the prefix is a raw string literal. The d-char-sequence serves as a
delimiter. The terminating d-char-sequence of a raw-string is the same sequence of characters
as the initial d-char-sequence. A d-char-sequence shall consist of at most 16 characters.

[Note: The characters '(' and ')' are permitted in a raw-string. Thus, R"delimiter((a|b))delimiter"
is equivalent to "(a|b)". —end note]

[Note: A Each longest sequence of characters that matches the grammar of a source-file
new-line line-break in a raw string literal results in a new-line in the resulting execution string
literal denotes a new-line.

[Example: Assuming no whitespace at the beginning of lines in the following example, the
assert will succeed:

10

const char* p = R"(a\
b
c)";
assert(std::strcmp(p, "a\\\nb\nc") == 0);

— end note example]

[Example: The raw string

R"a(
)\
a"
)a"

is equivalent to "\n)\\\na\"\n". The raw string

R"(x = "\"y\"")"

is equivalent to "x = \"\\\"y\\\"\"". —end example]

[cpp]

�? Preamble [cpp.pre]

preprocessing-file:
groupopt
module-file

module-file:
pp-global-module-fragmentopt pp-module groupopt pp-private-module-fragmentopt

pp-global-module-fragment:
module ; new-line line-break groupopt

pp-private-module-fragment:
module : private ; new-line line-break groupopt

group:
group-part
group group-part

group-part:
control-line
if-section
text-line
conditionally-supported-directive

11

control-line:
include pp-tokens new-line line-break
pp-import
define identifier replacement-list new-line line-break
define identifier lparen identifier-listopt) replacement-list new-line line-break
define identifier lparen ...) replacement-list new-line line-break
define identifier lparen identifier-list , ...) replacement-list new-line
line-break
undef identifier new-line line-break
line pp-tokens new-line line-break
error pp-tokensopt new-line line-break
pragma pp-tokensopt new-line line-break
new-line line-break

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line line-break groupopt
ifdef identifier new-line line-break groupopt
ifndef identifier new-line line-break groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line line-break groupopt
elifdef constant-expression new-line line-break groupopt
elifndef constant-expression new-line line-break groupopt

else-group:
else new-line line-break groupopt

endif-line:
endif new-line line-break

elif-group:
elif constant-expression new-line line-break groupopt

else-group:
else new-line line-break groupopt

endif-line:
endif new-line line-break

text-line:
pp-tokensopt new-line line-break

conditionally-supported-directive:
pp-tokens new-line line-break

lparen:
a (character not immediately preceded by whitespace whitespace

identifier-list:
identifier
identifier-list , identifier

12

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the
following constraints: At the start of translation phase 4, the first token in the sequence,
referred to as a directive-introducing token, begins with the first character in the source file
(optionally after whitespace containing no new-line characters) non-whitespace or follows a
sequence of whitespace whitespaces containing at least one new-line character line-break ,
and is

• a # preprocessing token, or

• an import preprocessing token immediately followed on the same logical line by a header-
name, <, identifier, string-literal, or : preprocessing token, or

• a module preprocessing token immediately followed on the same logical line by an
identifier, :, or ; preprocessing token, or

• an export preprocessing token immediately followed on the same logical line by one of
the two preceding forms.

The last token in the sequence is the first token within the sequence that is immediately
followed by whitespace whitespaces containing a new-line character line-break . [Note: Thus,
preprocessing directives are commonly called “lines”. These “lines” have no other syntactic
significance, as all whitespace whitespace is equivalent except in certain situations during
preprocessing (see the # character string literal creation operator in ??, for example). —end
note] [Note: A new-line character line-break ends the preprocessing directive even if it occurs
within what would otherwise be an invocation of a function-like macro. —end note]

[Example:

// preprocessing directive
module ; // preprocessing directive
export module leftpad; // preprocessing directive
import <string>; // preprocessing directive
export import "squee"; // preprocessing directive
import rightpad; // preprocessing directive
import :part; // preprocessing directive

module // not a preprocessing directive
; // not a preprocessing directive

export // not a preprocessing directive
import // not a preprocessing directive
foo; // not a preprocessing directive

export // not a preprocessing directive

13

import foo; // preprocessing directive (ill-formed at phase 7)

import :: // not a preprocessing directive
import -> // not a preprocessing directive

—end example]

A sequence of preprocessing tokens is only a text-line if it does not begin with a directive-
introducing token. A sequence of preprocessing tokens is only a conditionally-supported-
directive if it does not begin with any of the directive names appearing after a # in the syntax.
A conditionally-supported-directive is conditionally-supported with implementation-defined
semantics.

At the start of phase 4 of translation, the group of a pp-global-module-fragment shall contain
neither a text-line nor a pp-import.

When in a group that is skipped, the directive syntax is relaxed to allow any sequence of pre-
processing tokens to occur between the directive name and the following new-line character
line-break .

The only whitespace characters that shall appear between preprocessing tokens within a
preprocessing directive (from just after the directive-introducing token through just before
the terminating new-line character) are space and horizontal-tab (including spaces that have
replaced comments or possibly other whitespace characters in translation phase 3).

Only horizontal-whitespaces can appear between preprocessing tokens within a preprocessing
directive.

[Editor’s note: multi-line comments containing line-breaks are considered atomic horizontal-
whitespaces after phase 3]

The implementation can process and skip sections of source files conditionally, include other
source files, import macros from header units, and replace macros. These capabilities are
called preprocessing, because conceptually they occur before translation of the resulting
translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro expansion
unless otherwise stated.

[Example: In:

#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second line is not a preprocessing directive,
because it does not begin with a # at the start of translation phase 4, even though it will do so
after the macro EMPTY has been replaced. —end example]

14

�? Conditional inclusion [cpp.cond]

defined-macro-expression:
defined identifier
defined (identifier)

h-preprocessing-token:
any preprocessing-token other than >

h-pp-tokens:
h-preprocessing-token
h-pp-tokens h-preprocessing-token

header-name-tokens:
string-literal
< h-pp-tokens >

has-include-expression:
__has_include (header-name)
__has_include (header-name-tokens)

has-attribute-expression:
__has_cpp_attribute (pp-tokens)

The expression that controls conditional inclusion shall be an integral constant expression
except that identifiers (including those lexically identical to keywords) are interpreted as
described below 1ecause the controlling constant expression is evaluated during translation
phase 4, all identifiers either are or are not macro names — there simply are no keywords,
enumeration constants, etc. and it may contain zero or more defined-macro-expressions
and/or has-include-expressions and/or has-attribute-expressions as unary operator expressions.

A defined-macro-expression evaluates to 1 if the identifier is currently defined as a macro name
(that is, if it is predefined or if it has one or more active macro definitions, for example because
it has been the subject of a #define preprocessing directive without an intervening #undef
directive with the same subject identifier), 0 if it is not.

The second form of has-include-expression is considered only if the first form does not match,
in which case the preprocessing tokens are processed just as in normal text.

The header or source file identified by the parenthesized preprocessing token sequence in each
contained has-include-expression is searched for as if that preprocessing token sequence were
the pp-tokens in a #include directive, except that no further macro expansion is performed.
If such a directive would not satisfy the syntactic requirements of a #include directive, the
program is ill-formed. The has-include-expression evaluates to 1 if the search for the source
file succeeds, and to 0 if the search fails.

Each has-attribute-expression is replaced by a non-zero pp-number matching the form of
an integer-literal if the implementation supports an attribute with the name specified by
interpreting the pp-tokens, after macro expansion, as an attribute-token, and by 0 otherwise.
The program is ill-formed if the pp-tokens do not match the form of an attribute-token.

1B

15

For an attribute specified in this document, the value of the has-attribute-expression is given by
. For other attributes recognized by the implementation, the value is implementation-defined.
[Note: It is expected that the availability of an attribute can be detected by any non-zero result.
—end note]

Table 2: __has_cpp_attribute values
Attribute Value

carries_dependency 200809L
deprecated 201309L
fallthrough 201603L
likely 201803L
maybe_unused 201603L
no_unique_address 201803L
nodiscard 201907L
noreturn 200809L
unlikely 201803L

The #ifdef and #ifndef directives, and the defined conditional inclusion operator, shall treat
__has_include and __has_cpp_attribute as if theywere the names of definedmacros. The iden-
tifiers __has_include and __has_cpp_attribute shall not appear in any context not mentioned
in this subclause.

Each preprocessing token that remains (in the list of preprocessing tokens that will become
the controlling expression) after all macro replacements have occurred shall be in the lexical
form of a token.

Preprocessing directives of the forms
if constant-expression new-line line-break groupopt
elif constant-expression new-line line-break groupopt

check whether the controlling constant expression evaluates to nonzero.

Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the
controlling constant expression are replaced (except for those macro names modified by the
defined unary operator), just as in normal text. If the token defined is generated as a result of
this replacement process or use of the defined unary operator does not match one of the two
specified forms prior to macro replacement, the behavior is undefined.

After all replacements due to macro expansion and evaluations of defined-macro-expression s,
has-include-expression s, and has-attribute-expression s have been performed, all remaining
identifiers and keywords, except for true and false, are replaced with the pp-number 0, and
then each preprocessing token is converted into a token. [Note: An alternative token is not
an identifier, even when its spelling consists entirely of letters and underscores. Therefore it
is not subject to this replacement. —end note]

The resulting tokens comprise the controlling constant expression which is evaluated accord-
ing to the rules of ?? using arithmetic that has at least the ranges specified in ??. For the
purposes of this token conversion and evaluation all signed and unsigned integer types act
as if they have the same representation as, respectively, intmax_t or uintmax_t. [Note: Thus
on an implementation where std::numeric_limits<int>::max() is 0x7FFF and std::numeric_-

16

limits<unsigned int>::max() is 0xFFFF, the integer literal 0x8000 is signed and positive within
a #if expression even though it is unsigned in translation phase 7. —end note] This includes
interpreting character-literal s, which may involve converting escape sequences into execution
character set members. Whether the numeric value for these character-literal s matches the
value obtained when an identical character-literal occurs in an expression (other than within a
#if or #elif directive) is implementation-defined. [Note: Thus, the constant expression in the
following #if directive and if statement is not guaranteed to evaluate to the same value in
these two contexts:

#if 'z' - 'a' == 25
if ('z' - 'a' == 25)

—end note] Also, whether a single-character character-literal may have a negative value is
implementation-defined. Each subexpressionwith type bool is subjected to integral promotion
before processing continues.

Preprocessing directives of the forms

ifdef identifier new-line line-break groupopt
ifndef identifier new-line line-break groupopt
elifdef identifier new-line line-break groupopt
elifndef identifier new-line line-break groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions
are equivalent to #if defined identifier, #if !defined identifier, #elif defined identifier, and
#elif !defined identifier, respectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), the group that
it controls is skipped: directives are processed only through the name that determines the
directive in order to keep track of the level of nested conditionals; the rest of the directives’
preprocessing tokens are ignored, as are the other preprocessing tokens in the group. Only
the first group whose control condition evaluates to true (nonzero) is processed; any following
groups are skipped and their controlling directives are processed as if they were in a group
that is skipped. If none of the conditions evaluates to true, and there is a #else directive, the
group controlled by the #else is processed; lacking a #else directive, all the groups until the
#endif are skipped.2s indicated by the syntax, a preprocessing token cannot follow a #else or
#endif directive before the terminating new-line character line-break . However, comments
can appear anywhere in a source file, including within a preprocessing directive.

[Example: This demonstrates a way to include a library optional facility only if it is available:

#if __has_include(<optional>)
include <optional>
if __cpp_lib_optional >= 201603
define have_optional 1
endif
#elif __has_include(<experimental/optional>)
include <experimental/optional>
if __cpp_lib_experimental_optional >= 201411
define have_optional 1
define experimental_optional 1

2A

17

endif
#endif
#ifndef have_optional
define have_optional 0
#endif

—end example]

[Example: This demonstrates a way to use the attribute [[acme::deprecated]] only if it is
available.

#if __has_cpp_attribute(acme::deprecated)
define ATTR_DEPRECATED(msg) [[acme::deprecated(msg)]]
#else
define ATTR_DEPRECATED(msg) [[deprecated(msg)]]
#endif
ATTR_DEPRECATED("This function is deprecated") void anvil();

—end example]

�? Source file inclusion [cpp.include]

A #include directive shall identify a header or source file that can be processed by the imple-
mentation.

A preprocessingdirective of the form # include < h-char-sequence > new-line line-break

searches a sequence of implementation-defined places for a header identified uniquely by
the specified sequence between the < and > delimiters, and causes the replacement of that
directive by the entire contents of the header. How the places are specified or the header
identified is implementation-defined.

A preprocessingdirective of the form # include " q-char-sequence " new-line line-break

causes the replacement of that directive by the entire contents of the source file identified by
the specified sequence between the " delimiters. The named source file is searched for in an
implementation-definedmanner. If this search is not supported, or if the search fails, the direc-
tive is reprocessed as if it read # include < h-char-sequence > new-line line-break

with the identical contained sequence (including > characters, if any) from the original directive.

A preprocessingdirective of the form # include pp-tokens new-line line-break

(that does not match one of the two previous forms) is permitted. The preprocessing tokens
after include in the directive are processed just as in normal text (i.e., each identifier currently
defined as a macro name is replaced by its replacement list of preprocessing tokens). If the
directive resulting after all replacements does not match one of the two previous forms, the
behavior is undefined. 3ote that adjacent string-literal s are not concatenated into a single

3N

18

string-literal (see the translation phases in ??); thus, an expansion that results in two string-
literal s is an invalid directive. The method by which a sequence of preprocessing tokens
between a < and a > preprocessing token pair or a pair of " characters is combined into a
single header name preprocessing token is implementation-defined.

The implementation shall provide unique mappings for sequences consisting of one or more
nondigits or digits followed by a period (.) and a single nondigit. The first character shall not
be a digit. The implementation may ignore distinctions of alphabetical case.

A #include preprocessing directive may appear in a source file that has been read because of
a #include directive in another file, up to an implementation-defined nesting limit.

If the header identified by the header-namedenotes an importable header, it is implementation-
definedwhether the #include preprocessing directive is instead replaced by an import directive
of the form import header-name ; new-line line-break

[Note: An implementation can provide amechanism for making arbitrary source files available
to the < > search. However, using the < > form for headers provided with the implementation
and the " " form for sources outside the control of the implementation achieves wider
portability. For instance:

#include <stdio.h>
#include <unistd.h>
#include "usefullib.h"
#include "myprog.h"

—end note]

[Example: This illustrates macro-replaced #include directives:

#if VERSION == 1
#define INCFILE "vers1.h"
#elif VERSION == 2
#define INCFILE "vers2.h" // and so on
#else
#define INCFILE "versN.h"
#endif
#include INCFILE

—end example]

�? Module directive [cpp.module]

pp-module:
exportopt module pp-tokensopt ; new-line line-break

A pp-module shall not appear in a context where module or (if it is the first token of the pp-
module) export is an identifier defined as an object-like macro.

19

Any preprocessing tokens after the module preprocessing token in the module directive are
processed just as in normal text. [Note: Each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens. —end note]

The module and export (if it exists) preprocessing tokens are replaced by themodule-keyword
and export-keyword preprocessing tokens respectively. [Note: This makes the line no longer a
directive so it is not removed at the end of phase 4. —end note]

�? Header unit importation [cpp.import]

pp-import:
exportopt import header-name pp-tokensopt ; new-line line-break
exportopt import header-name-tokens pp-tokensopt ; new-line line-break
exportopt import pp-tokens ; new-line line-break

A pp-import shall not appear in a context where import or (if it is the first token of the pp-import)
export is an identifier defined as an object-like macro.

The preprocessing tokens after the import preprocessing token in the import control-line are
processed just as in normal text (i.e., each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). [Note: An import directive matching
the first two forms of a pp-import instructs the preprocessor to import macros from the header
unit denoted by the header-name, as described below. —end note] The point of macro import
for the first two forms of pp-import is immediately after the new-line line-break terminating
the pp-import. The last form of pp-import is only considered if the first two forms did not
match, and does not have a point of macro import.

//...

�? Macro replacement [cpp.replace]

�? General [cpp.replace.general]

Two replacement lists are identical if and only if the preprocessing tokens in both have
the same number, ordering, spelling, and whitespace whitespace separation, where all
whitespace separations sequences of one or more whitespaces are considered identical.

An identifier currently defined as an object-likemacro (see below)may be redefined by another
#define preprocessing directive provided that the second definition is an object-like macro
definition and the two replacement lists are identical, otherwise the program is ill-formed.
Likewise, an identifier currently defined as a function-like macro (see below) may be redefined
by another #define preprocessing directive provided that the second definition is a function-
like macro definition that has the same number and spelling of parameters, and the two
replacement lists are identical, otherwise the program is ill-formed.

[Example: The following sequence is valid:

#define OBJ_LIKE (1-1)

20

#define OBJ_LIKE /* whitespace */ (1-1) /* other */
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a)(/* note the whitespace */ \
a /* other stuff on this line
*/)

But the following redefinitions are invalid:

#define OBJ_LIKE (0) // different token sequence
#define OBJ_LIKE (1 - 1) // different whitespace
#define FUNC_LIKE(b) (a) // different parameter usage
#define FUNC_LIKE(b) (b) // different parameter spelling

—end example]

There shall be whitespace one or more whitespaces between the identifier and the replace-
ment list in the definition of an object-like macro.

If the identifier-list in the macro definition does not end with an ellipsis, the number of argu-
ments (including those arguments consisting of no preprocessing tokens) in an invocation of a
function-like macro shall equal the number of parameters in the macro definition. Otherwise,
there shall be at least as many arguments in the invocation as there are parameters in the
macro definition (excluding the ...). There shall exist a) preprocessing token that terminates
the invocation.

The identifiers __VA_ARGS__ and __VA_OPT__ shall occur only in the replacement-list of a function-
like macro that uses the ellipsis notation in the parameters.

A parameter identifier in a function-like macro shall be uniquely declared within its scope.

The identifier immediately following the define is called themacro name. There is one name
space for macro names. Any whitespace characters whitespaces preceding or following the
replacement list of preprocessing tokens are not considered part of the replacement list for
either form of macro.

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a
preprocessing directive can begin, the identifier is not subject to macro replacement.

A preprocessingdirective of the form # define identifier replacement-list new-line line-break

defines an object-like macro that causes each subsequent instance of the macro name 4ince,
by macro-replacement time, all character-literal s and string-literal s are preprocessing tokens,
not sequences possibly containing identifier-like subsequences (see ??, translation phases),
they are never scanned for macro names or parameters. to be replaced by the replacement
list of preprocessing tokens that constitute the remainder of the directive. 5n alternative
token is not an identifier, even when its spelling consists entirely of letters and underscores.
Therefore it is not possible to define a macro whose name is the same as that of an alternative
token. The replacement list is then rescanned for more macro names as specified below.

4S
5A

21

[Example: The simplest use of this facility is to define a “manifest constant”, as in

#define TABSIZE 100
int table[TABSIZE];

—end example]

A preprocessing directive of the form

define identifier lparen identifier-listopt) replacement-list new-line line-break
define identifier lparen ...) replacement-list new-line line-break
define identifier lparen identifier-list , ...) replacement-list new-line line-break

defines a function-like macro with parameters, whose use is similar syntactically to a function
call. The parameters are specified by the optional list of identifiers. Each subsequent instance
of the function-like macro name followed by a (as the next preprocessing token introduces
the sequence of preprocessing tokens that is replaced by the replacement list in the definition
(an invocation of the macro). The replaced sequence of preprocessing tokens is terminated
by the matching) preprocessing token, skipping intervening matched pairs of left and right
parenthesis preprocessing tokens. Within the sequence of preprocessing tokens making up
an invocation of a function-like macro, new-line is considered a normal whitespace character
line-break is considered like other whitespaces.

The sequence of preprocessing tokens bounded by the outside-most matching parentheses
forms the list of arguments for the function-like macro. The individual arguments within
the list are separated by comma preprocessing tokens, but comma preprocessing tokens
between matching inner parentheses do not separate arguments. If there are sequences of
preprocessing tokens within the list of arguments that would otherwise act as preprocessing
directives, 6 conditionally-supported-directive is a preprocessing directive regardless of whether
the implementation supports it. the behavior is undefined.

[Example: The following defines a function-like macro whose value is the maximum of its
arguments. It has the disadvantages of evaluating one or the other of its arguments a second
time (including side effects) and generating more code than a function if invoked several
times. It also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.
—end example]

If there is a ... immediately preceding the) in the function-like macro definition, then the
trailing arguments (if any), including any separating commapreprocessing tokens, aremerged
to form a single item: the variable arguments. The number of arguments so combined is such
that, following merger, the number of arguments is either equal to or one more than the
number of parameters in the macro definition (excluding the ...).

6A

22

�? The # operator [cpp.stringize]

Each # preprocessing token in the replacement list for a function-like macro shall be followed
by a parameter as the next preprocessing token in the replacement list.

A character string literal is a string-literal with no prefix. If, in the replacement list, a param-
eter is immediately preceded by a # preprocessing token, both are replaced by a single
character string literal preprocessing token that contains the spelling of the preprocessing
token sequence for the corresponding argument (excluding placemarker tokens). Let the
stringizing argument be the preprocessing token sequence for the corresponding argument
with placemarker tokens removed. Each occurrence of whitespace sequence of one or more
whitespaces between the stringizing argument’s preprocessing tokens becomes a single space
character in the character string literal. All whitespace whitespaces before the first prepro-
cessing token and after the last preprocessing token comprising the stringizing argument is
are deleted. Otherwise, the original spelling of each preprocessing token in the stringizing
argument is retained in the character string literal, except for special handling for producing
the spelling of string-literal s and character-literal s: a \ character is inserted before each " and
\ character of a character-literal or string-literal (including the delimiting " characters). If the
replacement that results is not a valid character string literal, the behavior is undefined. The
character string literal corresponding to an empty stringizing argument is "". The order of
evaluation of # and ## operators is unspecified.

�? The ## operator [cpp.concat]

A ## preprocessing token shall not occur at the beginning or at the end of a replacement list
for either form of macro definition.

If, in the replacement list of a function-like macro, a parameter is immediately preceded or
followed by a ## preprocessing token, the parameter is replaced by the corresponding argu-
ment’s preprocessing token sequence; however, if an argument consists of no preprocessing
tokens, the parameter is replaced by a placemarker preprocessing token instead. 7lacemarker
preprocessing tokens do not appear in the syntax because they are temporary entities that
exist only within translation phase 4.

For both object-like and function-like macro invocations, before the replacement list is reex-
amined for more macro names to replace, each instance of a ## preprocessing token in the
replacement list (not from an argument) is deleted and the preceding preprocessing token
is concatenated with the following preprocessing token. Placemarker preprocessing tokens
are handled specially: concatenation of two placemarkers results in a single placemarker
preprocessing token, and concatenation of a placemarker with a non-placemarker prepro-
cessing token results in the non-placemarker preprocessing token. If the result is not a valid
preprocessing token, the behavior is undefined. The resulting token is available for further
macro replacement. The order of evaluation of ## operators is unspecified.

[Example: The sequence

#define str(s) # s

7P

23

#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \
x ## s, x ## t)
#define INCFILE(n) vers ## n
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", '\4') // this goes away
== 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", '\\4') == 0" ": @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", '\\4') == 0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

The presence of Space whitespace around the # and ## tokens in the macro definition is
optional. —end example]

[Example: In the following fragment:

#define hash_hash # ## #
#define mkstr(a) # a
#define in_between(a) mkstr(a)
#define join(c, d) in_between(c hash_hash d)
char p[] = join(x, y); // equivalent to char p[] = "x ## y";

The expansion produces, at various stages:

join(x, y)
in_between(x hash_hash y)
in_between(x ## y)
mkstr(x ## y)

24

"x ## y"

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp
signs, but this new token is not the ## operator. —end example]

[Example: To illustrate the rules for placemarker preprocessing tokens, the sequence

#define t(x,y,z) x ## y ## z
int j[] = { t(1,2,3), t(,4,5), t(6,,7), t(8,9,),

t(10,,), t(,11,), t(,,12), t(,,) };

results in

int j[] = { 123, 45, 67, 89,
10, 11, 12, };

—end example]

�? Scope of macro definitions [cpp.scope]

A macro definition lasts (independent of block structure) until a corresponding #undef direc-
tive is encountered or (if none is encountered) until the end of the translation unit. Macro
definitions have no significance after translation phase 4.

A preprocessingdirective of the form # undef identifier new-line line-break

causes the specified identifier no longer to be defined as a macro name. It is ignored if the
specified identifier is not currently defined as a macro name.

�? Line control [cpp.line]

The string-literal of a #line directive, if present, shall be a character string literal.

The line number of the current source line is one greater than the number of new-line
characters line-breaks read or introduced in resulting from translation phase 1 while pro-
cessing the source file to the current token.

A preprocessingdirective of the form # line digit-sequence new-line line-break

causes the implementation to behave as if the following sequence of source lines begins
with a source line that has a line number as specified by the digit sequence (interpreted as a
decimal integer). If the digit sequence specifies zero or a number greater than 2147483647,
the behavior is undefined.

A preprocessingdirective of the form # line digit-sequence " s-char-sequenceopt " new-line line-break

sets the presumed line number similarly and changes the presumed name of the source file
to be the contents of the character string literal.

25

Apreprocessingdirective of the form # line pp-tokens new-line line-break

(that does not match one of the two previous forms) is permitted. The preprocessing tokens
after line on the directive are processed just as in normal text (each identifier currently de-
fined as a macro name is replaced by its replacement list of preprocessing tokens). If the
directive resulting after all replacements does not match one of the two previous forms, the
behavior is undefined; otherwise, the result is processed as appropriate.

�? Error directive [cpp.error]

Apreprocessingdirective of the form # error pp-tokensopt new-line line-break

causes the implementation to produce a diagnostic message that includes the specified se-
quence of preprocessing tokens, and renders the program ill-formed.

�? Pragma directive [cpp.pragma]

Apreprocessingdirective of the form # pragma pp-tokensopt new-line line-break

causes the implementation to behave in an implementation-defined manner. The behavior
may cause translation to fail or cause the translator or the resulting program to behave in
a non-conforming manner. Any pragma that is not recognized by the implementation is
ignored.

�? Null directive [cpp.null]

Apreprocessingdirective of the form # new-line line-break

has no effect.

Acknowledgments

Thanks to Peter Brett, Hubert Tong, Jens Maurer and the entierty of SG-16 who provided
valuable feedback!

References

[1] Melanie Blower. P2334R1: Add support for preprocessing directives elifdef and elifndef.
https://wg21.link/p2334r1, 4 2021.

[2] Corentin Jabot. P2223R2: Trimming whitespaces before line splicing. https://wg21.link/
p2223r2, 4 2021.

[3] Corentin Jabot. P2295R2: Support for utf-8 as a portable source file encoding. https:
//wg21.link/p2295r2, 4 2021.

[4] Jens Maurer. P2314R1: Character sets and encodings. https://wg21.link/p2314r1, 3 2021.

26

https://wg21.link/p2334r1
https://wg21.link/p2223r2
https://wg21.link/p2223r2
https://wg21.link/p2295r2
https://wg21.link/p2295r2
https://wg21.link/p2314r1

[5] Jens Maurer. P2314R2: Character sets and encodings. https://wg21.link/p2314r2, 5 2021.

[6] Jens Maurer. P2314R4: Character sets and encodings. https://wg21.link/p2314r4, 10
2021.

[7] Mike Miller. CWG1655: Line endings in raw string literals. https://wg21.link/cwg1655, 4
2013.

[8] Richard Smith. CWG1901: punctuator referenced but not defined. https://wg21.link/
cwg1901, 3 2014.

[9] Richard Smith. CWG2002: White space within preprocessing directives. https://wg21.
link/cwg2002, 9 2014.

[N4885] Thomas Köppe Working Draft, Standard for Programming Language C++ new-line
https://wg21.link/N4885

27

https://wg21.link/p2314r2
https://wg21.link/p2314r4
https://wg21.link/cwg1655
https://wg21.link/cwg1901
https://wg21.link/cwg1901
https://wg21.link/cwg2002
https://wg21.link/cwg2002
https://wg21.link/N4885

	1 Revisions
	2 Design
	2.1 Make whitespace grammar elements
	2.2 Comments
	2.3 VT and FF are treated as horizontal whitespaces
	2.4 \n\r
	2.5 Replace the term new-line by line-break
	2.6 Do not perform whitespace replacement
	2.7 The set of character is not expanded
	2.8 Raw-string literals

	3 Wording
	4 Phases of translation
	5 Preprocessing tokens
	6 Tokens
	7 Whitespaces
	7.1 Comments

	8 Header names
	8.1 Character literals
	8.2 String literals

	9 [cpp]
	10 Preamble
	11 Conditional inclusion
	12 Source file inclusion
	13 Module directive
	14 Header unit importation
	15 Macro replacement
	15.1 General
	15.2 The # operator
	15.3 The ## operator
	15.4 Scope of macro definitions

	16 Line control
	17 Error directive
	18 Pragma directive
	19 Null directive
	20 Acknowledgments

