
P1083R7
Pablo Halpern <phalpern@halpernwightsoftware.com>
2022-10-14 16:51 EDT
Target audience: LEWG/LWG

Move resource_adaptor from Library TS to the
C++ WP

Abstract
The pmr::resource_adaptor class template in the Library Fundamentals TS
wraps an object whose type that meets the allocator requirements and gives
it a pmr::memory_resource interface. When the polymorphic allocator in-
frastructure was moved from the Library Fundamentals TS to the C++17
working draft, pmr::resource_adaptor was left behind. The decision not to
move pmr::resource_adaptor was deliberately conservative, but the absence of
resource_adaptor in the standard is a hole that must be plugged for a smooth
transition to the ubiquitous use of polymorphic_allocator, as proposed in
P0339 and P0987. This paper proposes that pmr::resource_adaptor be moved
from the LFTS and added to the C++26 working draft.

Status
On Oct 5, 2021, a subgroup of LWG reviewed P1083R3 and found an issue in the
way the max alignment supported by pmr::resource_adaptor was specified in
the paper. There was general consensus that a MaxAlign template parameter
would be preferable, but the change was considered to be of a design nature and
therefore requires LEWG review. The R4 revision of this paper contains the
changes from LEWG review and the R5 revision contains fixes identified in the
LWG reflector discussion that followed.

On March 15, 2022 LEWG reviewed P1083R5 in a telcon. Because of scheduling
and technical concerns, it was decided that the paper was not ready for C++23
but that the paper should be revised and brought back to LEWG with the intent
of forwarding for C++26. The R6 revision contains the fixes required by LEWG.

Change History
Changes from R6 to R7 (pre Kona 2022)

• Reworded additional requirements on the Allocator parameter to follow
the proper voice of the standard (thanks to Daniel Kruegler).

• Added noexcept to get_adapted_allocator.

1

mailto:phalpern@halpernwightsoftware.com
http://wg21.link/p0339
http://wg21.link/p0987


Changes from R5 to R6 (from LEGW telcon)
• Defined max_align_v as inline constexpr.
• Removed nested type from aligned_raw_storage. Made it clear that

aligned_raw_storage is not a drop-in replacement for aligned_storage.
• Removed aligned_object_storage, which was not needed for this pro-

posal, from the formal wording. This facility might come back in a separate
paper.

• Changed ship vehicle to C++26.

Changes from R4 to R5 (from LWG reflector discussion)
• Mandate that T for aligned_object_storage<T> must be an object type.
• Clarify that T for aligned_object_storage<T> may be cv-qualified.
• Change LFTS reference from v2 to v3.

Changes from R3 to R4 (from LWG telcon)
• Added Design changes section that describes changes after LWG review.
• Added MaxType as a second template parameter to pmr::resource_adaptor.
• Added the max_align_v constant, aligned_type metafunction,

aligned_raw_storage class template, and aligned_object_storage
class template.

• Made a few editorial changes to comply with LWG style.

Changes from R2 to R3 (in Kona and pre-Cologne)
• Changed resource-adaptor-imp to kabob case.
• Removed special member functions (copy/move ctors, etc.) and let them

be auto-generated.
• Added a requirement that the Allocator template parameter must sup-

port rebinding to any non-class, non-over-aligned type. This allows the
implementation of do_allocate to dispatch to a suitably rebound copy of
the allocator as needed to support any native alignment argument.

Changes from R1 to R2 (in San Diego)
• Paper was forwarded from LEWG to LWG on Tuesday, 2018-10-06
• Copied the formal wording from the LFTS directly into this paper
• Minor wording changes as per initial LWG review
• Rebased to the October 2018 draft of the C++ WP

Changes from R0 to R1 (pre-San Diego)
• Added a note for LWG to consider clarifying the alignment requirements

for resource_adaptor<A>::do_allocate().
• Changed rebind type from char to byte.

2



• Rebased to July 2018 draft of the C++ WP.

Motivation
It is expected that more and more classes, especially those that would not oth-
erwise be templates, will use pmr::polymorphic_allocator<byte> to allocate
memory rather than specifying an allocator as a template parameter. In order
to pass an allocator to one of these classes, the allocator must either already be
a polymorphic allocator, or must be adapted from a non-polymorphic allocator.
The process of adaptation is facilitated by pmr::resource_adaptor, which is a
simple class template, has been in the LFTS for a long time, and has been fully
implemented. It is therefore a low-risk, high-benefit component to add to the
C++ WP.

Design changes (for LEWG review)
The following design changes were made as a consequence of discussions in LWG
on 5 October 2021. LWG felt that the scope of these changes warranted review
by LEWG.

MaxAlign template argument: A pmr::resource_adaptor instance wraps
an object having a type that meets the Allocator requirements. Its do_allocate
virtual member function supplies aligned memory by invoking the allocate
member function on the wrapped allocator. The only way to supply alignment
information to the wrapped allocator is to rebind it for a value_type
having the desired alignment but, because the alignment is specified to
pmr::resource_adaptor::allocate at run time, the implementation must
rebind its allocator for every possible alignment and dynamically choose the
correct one. In order to keep the number of such rebound instantiations
manageable and reduce the requirements on the allocator type, an upper
limit (default alignof(max_align_t)) can be specified when instantiating
pmr::resource_adaptor. This recent change was made after discussion with
members of LWG, and with their encouragement.

(Optional) constexpr value max_align_v: The standard has a type,
std::max_align_t, whose alignment is at least as great as that of ev-
ery scalar type. I found that I was continually referring to the value,
alignof(std::max_align_t). In fact, every single use of max_align_t in
the standard is as the operand of alignof. As a drive-by fix, therefore, this
proposal introduces the constant max_align_v as a more straightforward
spelling of alignof(max_align_t). Note that the introduction of this constant
is completely severable from the proposal if it is deemed undesirable. The name
is also subject to bikeshedding (e.g., by removing the _v).

Alias template std::aligned_type: This alias is effectively a meta-
function that resolves to a scalar type if possible, otherwise to a spe-

3



cialization of aligned_raw_storage. Its use in this specification allows
pmr::resource_adaptor to work with minimalist allocators, including those
that can be rebound only for scalar types. For over-aligned values, it uses
aligned_raw_storage, below. Both aligned_raw_storage and aligned_type
are declared in header <memory>, but LEWG could consider putting them
somewhere else (e.g., in <utility>).

Class template std::aligned_raw_storage: When instantiated with an
alignment greater than max_align_v, std::aligned_type could be defined
vaguely in terms of an unspecified over-aligned type, but LWG wanted to
be more precise so as to better describe the allowable set of allocators us-
able with resource_adaptor. The obvious choice of the over-aligned type
would have been std::aligned_storage, but that template has been depre-
cated as a result of numerous flaws described in P1413. The class template
std::aligned_raw_storage is intended to replace std::aligned_storage and
correct the problems associated with it; specifically, it is not a metafunction,
but a struct template, and it provides direct access to its data buffer, which
can be validly cast to a pointer to any type having the specified alignment (or
less). The relationship between size and alignment is specifically described in
the wording, so programmers can rely on it. Note that aligned_raw_storage
is not a drop-in replacement for the deprecated aligned_storage metafunction
because the arguments are reversed and it does not provide a type member
typedef.

(Not proposed) Class template std::aligned_object_storage: The
alignment parameter for aligned_raw_storage, described above, is specified
as a number rather than as a type – as needed for low-level types like
pmr::resource_adaptor – and the storage must be cast to the desired type
before it’s used. This primitive type practically screams for the introduction of
an aligned storage type parameterized on the type of object you wish to store
in it. Although not needed for this proposal, prior revisions of this proposal
included aligned_object_storage for this purpose. However, because of
technical concerns regarding the design of aligned_object_storage, it was
decided that it would be best to split it out into its own paper so that it could
be refined (or rejected) separately, without affecting this proposal.

Impact on the standard
pmr::resource_adaptor is a pure library extension requiring no changes to the
core language nor to any existing classes in the standard library. A couple of
general-purpose templates (aligned_type and aligned_raw_storage) are also
added as pure library extensions.

4



Implementation Experience
A full implementation of the current proposal can be found in GitHub at
https://github.com/phalpern/WG21-halpern/tree/P1083/P1083-resource_adaptor.

The version described in the Library Fundamentals TS has been implemented
by multiple vendors in the std::experimental::pmr namespace.

Formal Wording
This proposal is based on the Library Fundamentals TS v3, N4873 and the October
2021 draft of the C++ WP, N4901.

In section 17.2.1 [cstddef.syn] of the C++WP, add the following definition
sometime after the declaration of max_align_t in header <cstddef>:

inline constexpr size_t max_align_v = alignof(max_align_t);

In section 20.10.2 [memory.syn], add the following declarations to <memory>
(probably near the top):

template <size_t Align, size_t Sz = Align> struct aligned_raw_storage;
template <size_t Align> using aligned_type = see below;

Prior to section 20.10.3, add the description of these new templates:

20.10.? Aligned storage [aligned.storage]

20.10.?.1 Aligned raw storage [aligned.raw.storage]

namespace std {
template <size_t Align, size_t Sz = Align>
struct aligned_raw_storage
{

static constexpr size_t alignment = Align;
static constexpr size_t size = (Sz + Align - 1) & ~(Align - 1);

constexpr void* data() noexcept { return buffer; }
constexpr const void* data() const noexcept { return buffer; }

alignas(alignment) byte buffer[size];
};

}

Mandates: Align is a power of 2, Sz > 0

An instantiation of template aligned_raw_storage is a standard-layout trivial
type that provides storage having the specified alignment and size, where the
size is rounded up to the nearest multiple of the alignment.

20.10.?.3 Aligned type [aligned.type]

5

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4873.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2021/n4901.pdf


template <size_t Align> using aligned_type = see below;

Mandates: Align is a power of 2.

If there exists a scalar type, T, such that alignof(T) == Align and sizeof(T)
== Align, then aligned_type<Align> is an alias for T; otherwise, it is an alias
for aligned_raw_storage<Align, Align>. If more than one scalar meets the
requirements for T, the one chosen is implementation defined, but consistent for
all instantiations of aligned_type with that alignment.

In section 20.12.1 [mem.res.syn], add the following declaration immediately after
the declaration of operator!=(const polymorphic_allocator...):

// 20.12.? resource adaptorfor a given alignment.
// The name resource-adaptor-imp is for exposition only.
template <class Allocator, size_t MaxAlign> class resource-adaptor-imp;

template <class Allocator, size_t MaxAlign = max_align_v>
using resource_adaptor = resource-adaptor-imp<

typename allocator_traits<Allocator>::template rebind_alloc<byte>,
MaxAlign>;

Insert before section 20.12.5 [mem.res.pool] of the C++ WP, the following section,
taken with modifications from section 5.5 of the LFTS v3:

20.12.? Alias template resource_adaptor [memory.resource.adaptor]

20.12.?.1 resource_adaptor [memory.resource.adaptor.overview]

An instance of resource_adaptor<Allocator, MaxAlign> is an adaptor that
wraps a memory_resource interface around Allocator. [Note: The type of
resource_adaptor<X, N> is independent of X::value_type. – end note] The
Allocator parameter to resource_adaptor shall meet the Cpp17Allocator require-
ments (§15.5.3.5). The program is ill-formed if any of

• is_same_v<typename allocator_traits<Allocator>::pointer,
allocator_traits<Allocator>::value_type*>,

• is_same_v<typename allocator_traits<Allocator>::const_pointer,
const allocator_traits<Allocator>::value_type*>,

• is_same_v<typename allocator_traits<Allocator>::void_pointer,
void*>, or

• is_same_v<typename allocator_traits<Allocator>::const_void_pointer,
const void*>

is not true. The program is ill-formed, no diagnostic required, unless calls to
allocator_traits<Allocator>::template rebind_traits<aligned_type<N>>::allocate
and allocator_traits<Allocator>::template rebind_traits<aligned_type<N>>::deallocate
are well-formed for all N, such that N is a power of 2 less than or equal to
MaxAlign.

6



// The name "resource-adaptor-imp" is for exposition only.
template <class Allocator, size_t MaxAlign>
class resource-adaptor-imp : public memory_resource {

Allocator m_alloc; // exposition only

public:
using adapted_allocator_type = Allocator;

resource-adaptor-imp() = default;
resource-adaptor-imp(const resource-adaptor-imp&) noexcept = default;
resource-adaptor-imp(resource-adaptor-imp&&) noexcept = default;

explicit resource-adaptor-imp(const Allocator& a2) noexcept;
explicit resource-adaptor-imp(Allocator&& a2) noexcept;

resource-adaptor-imp& operator=(const resource-adaptor-imp&) = default;

adapted_allocator_type get_adapted_allocator() const noexcept
{

return m_alloc;
}

protected:
void* do_allocate(size_t bytes, size_t alignment) override;
void do_deallocate(void* p, size_t bytes, size_t alignment) override;
bool do_is_equal(const memory_resource& other) const noexcept override;

};

20.12.?.2 resource-adaptor-imp constructors [memory.resource.adaptor.ctor]

explicit resource-adaptor-imp(const Allocator& a2) noexcept;

Effects: Initializes m_alloc with a2.

explicit resource-adaptor-imp(Allocator&& a2) noexcept;

Effects: Initializes m_alloc with std::move(a2).

20.12.?.3 resource-adaptor-imp member functions [memory.resource.adaptor.mem]

void* do_allocate(size_t bytes, size_t alignment);

Let CA be an integral constant expression such that CA == alignment,
is true, let U be the type aligned_type<CA>, and let n be (bytes
+ sizeof(U) - 1) / sizeof(U).

Preconditions: alignment is a power of two.

Returns: allocator_traits<Allocator>::template rebind_traits<U>::allocate(m_alloc,
n)

7



Throws: nothing unless the underlying allocator throws.

void do_deallocate(void* p, size_t bytes, size_t alignment);

Let CA be an integral constant expression such that CA == alignment,
is true, let U be the type aligned_type<CA>, and let n be (bytes
+ sizeof(U) - 1) / sizeof(U).

Preconditions: given a memory resource r such that this->is_equal(r)
is true, p was returned from a prior call to r.allocate(bytes,
alignment) and the storage at p has not yet been deallocated.

Effects: allocator_traits<Allocator>::template rebind_traits<U>::deallocate(m_alloc,
p, n)

bool do_is_equal(const memory_resource& other) const noexcept;

Let p be dynamic_cast<const resource-adaptor-imp*>(&other).

Returns: false if p is null; otherwise the value of m_alloc ==
p->m_alloc.

References
N4901. Working Draft, Standard for Programming Language C++, Thomas
Köppe, editor, 2021-10-23.

N4873 Programming Languages - C++ Extensions for Library Fundamentals,
Version 3, Thomas Köppe, editor, 2020-11-09.

P0339: polymorphic_allocator<> as a vocabulary type, Pablo Halpern, 2018-
04-02.

P0987: polymorphic_allocator instead of type-erasure, Pablo Halpern, 2018-04-
02.

8

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2021/n4901.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4873.html
http://wg21.link/p0339
http://wg21.link/p0987

	Move resource_adaptor from Library TS to the C++ WP
	Abstract
	Status
	Change History
	Changes from R6 to R7 (pre Kona 2022)
	Changes from R5 to R6 (from LEGW telcon)
	Changes from R4 to R5 (from LWG reflector discussion)
	Changes from R3 to R4 (from LWG telcon)
	Changes from R2 to R3 (in Kona and pre-Cologne)
	Changes from R1 to R2 (in San Diego)
	Changes from R0 to R1 (pre-San Diego)

	Motivation
	Design changes (for LEWG review)
	Impact on the standard
	Implementation Experience
	Formal Wording
	References

