
P0987r1: polymorphic_allocator<> instead of type-erasure Page 1 of 7

Doc No: P0987r1
Date: 2022-09-14
Audience: LWG
Authors: Pablo Halpern <phalpern@halpernwightsoftware.com>

polymorphic_allocator<> instead of type-erasure

Contents
1 Abstract ... 1
2 Related issues .. 1
3 History ... 2
4 Motivation ... 2
5 Proposal Overview .. 3
6 Future directions ... 3
7 Formal Wording ... 3

7.1 Document Conventions ... 3
7.2 Feature test macros .. 4
7.3 Undo changes to uses-allocator construction .. 4
7.4 Remove all mention of type-erased allocator from the TS ... 4
7.5 Changes to std::experimental::function .. 4

8 References ... 7

1 Abstract
Type-erased allocators have been proposed in the Library Fundamentals Technical
Specification working draft as a way to add allocator customization to types such as
std::function that do not have allocators as part of their type (i.e., we specify the allocator
type on construction, not when instantiating the type). Type erasure of allocators is
somewhat complex and inefficient for implementers, especially when combined with erasure
of other types in the constructor (2-dimensional type erasure), as would be the case for
std::function. This paper proposes removing type-erased allocators from the LFTS WP
and, for experimental::function, replacing them with the use of
std::pmr::polymorphic_allocator<>, consistent with the use of
polymorphic_allocator as a vocabulary type (see P0339, which was adopted into C++20).

This paper is split off from P0339r3, which proposes polymorphic_allocator<byte> as a
vocabulary type. While P0339r4 contains those portions of P0339r3 targeted for the C++
working draft, this proposal contains those portions of P0339r3 that are targeted for the next
release of the Library Fundamentals technical specification.

2 Related issues
Adoption of this paper would resolve LWG issue 2564 by removing type erasure and, thus,
allowing the noexcept constructors to remain noexcept.

P0987r1: polymorphic_allocator<> instead of type-erasure Page 2 of 7

Adoption of this paper would resolve a small part of LWG issue 3411 by removing a few
sections touched by the proposed resolution of issue 3411.

3 History
Changes from R0 to R1

• Rebased section numbers, etc., onto the latest LFTS and C++20.
• Use std::pmr::polymorphic_allocator<> instead of

std::pmr::polymorphic_allocator<byte> in most cases.
• Added wording to remove all mention of type-erased allocators from the TS and

removed wording that attempted (but failed) to give type-erased allocators a uniform
pmr interface. This change should avoid an NB comment that would otherwise be
guaranteed.

• Corrected wording for experimental::function, especially wrt selection of allocator
on construction. Also updated the language to use preconditions and constraints
instead of requires.

• Removed wording that tweaked the existing (incorrect) interfaces to
experimental::promise and experimental::packaged_task from the TS. With
these changes, all futures-related extensions are removed from the TS.

Prior to R0

This paper was formerly part of P0339, which proposed extensions to
polymorphic_allocator so that it can more easily be used as a vocabulary type. At the
March 2018 Jacksonville meeting, LEWG voted to split P0339r3 into two parts: one part to be
targeted to C++20 (P0339r4), and the other part to be targeted to the next LFTS (this paper).
LEWG also voted to advance both papers to LWG without further LEWG review. P0339r6 was
ultimately accepted into the C++20 standard.

4 Motivation
The current definition of std::function in the C++20 standard does not allow the user to
supply an allocator to control memory allocation despite the fact that it sometimes allocates
memory and that the C++14 standard had a (broken and never implemented) interface for
supplying an allocator. The LFTS defines a version of function that does take an allocator
argument at construction and uses type erasure to hold that allocator. The main constructor,
as it appears currently in the LFTS looks like this:
template<class F, class A>
 function(allocator_arg_t, const A&, F);

Note that both F and A are template parameters to the constructor that do not appear in the
class type. This means that the implementation of function needs to do two-dimensional
type erasure. which is both complicated and can be inefficient. The LFTS specification for
type-erased allocators is also somewhat complicated by the desire to have type-erased objects
place nicely in the realm of other objects that take allocator parameters.

The proposed revision of the above constructor looks like this:

P0987r1: polymorphic_allocator<> instead of type-erasure Page 3 of 7

template<class F>
 function(allocator_arg_t, const polymorphic_allocator<>&, F);

Note that the allocator is no longer a template argument, which simplifies specification and
copying of the allocator, and provides the ability to return the allocator to the client using a
straight-forward interface consistent with other allocator-savvy types:
polymorphic_allocator<> get_allocator() const noexcept;

5 Proposal Overview
Consistent with the use of polymorphic_allocator<> as a vocabulary type in P0339, this
paper proposes the following significant simplifications to the memory section of the Library
Fundamentals TS:

• Because polymorphic_allocator<> is an allocator, and does not require special
handling, we back out changes to the definition of uses-allocator construction and the
uses_allocator trait that are present in the current draft of the LFTS. (Section 2 of
the TS is completely removed.)

• Eliminate the Type-erased allocator section from the TS. A type using type-erased
allocators according to the existing LFTS would be forced to create a
resource_adaptor on the heap, and providing an interface by which it could be
accessed. Unfortunately, once made available to clients, the lifetime of the
resource_adaptor cannot be specified in such a way as to make it safely usable.

• Eliminate the type-erased allocator from the function class template, replacing it
with polymorphic_allocator<>. (Note that the type-erased allocator for function
was not implemented by any major standard-library supplier.)

• Remove expermental::promise and expermental::packaged_task, which existed
solely to use the new, but ill-conceived ability to make the type-erased allocator visible
to clients.

6 Future directions
We should consider using polymorphic_allocator<> in the interface to
std::experimental::any.

7 Formal Wording

7.1 Document Conventions

All section names and numbers are relative to the August 2022 draft of the Library
Fundamentals TS, N4920 and the C++20 standard (DIS at N4860).

Existing working paper text is indented and shown in dark blue. Edits to the working paper are shown with
red strikeouts for deleted text and green underlining for inserted text within the indented blue original text.

P0987r1: polymorphic_allocator<> instead of type-erasure Page 4 of 7

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected
that changes resulting from such guidance will be minor and will not delay acceptance of this
proposal in the same meeting at which it is presented.

7.2 Feature test macros

Modify selected rows from Table 2 in section 1.5 [general.feature.test] as follows:

Table 2 — Significant features in this technical specification

Doc. No. Title Primary
Section Macro Name Suffix Value Header

N3916
P0987R1

Type-erased
Polymorphic
allocator for
std::function

4.2
function_erasedpolymorphic_a
llocator

201406
202211

<experimental/functional>

<experimental/util
ity>

N3916
Type-erased
allocator for
std::promise

7.2 promise_erased_allocator 201406
<experimental/future>
<experimental/utility>

N3916

Type-erased
allocator for
std::packaged_
task

7.3
packaged_task_erased_allocat
or 201406

<experimental/future>
<experimental/utility>

7.3 Undo changes to uses-allocator construction

Remove section 2.2 [mods.allocator.uses] from the TS, which would have made changes to
sections 20.10.8.1, [allocator.uses.trait] and 20.10.8.2 [allocator.uses.construction] of the
standard.

7.4 Remove all mention of type-erased allocator from the TS

Remove section section 3.1 [utility], which introduces header <experimental/utility>,
defining struct erased_type, from the TS draft.

Remove section 5.3 [memory.type.erased.allocator], which defines type-erased allocator and
describes its properties, from the TS draft.

Remove all of section 7 [futures], which attempted to apply the ill-conceived principles of
section 5.3 to promise and packaged_task, from the TS draft.

7.5 Changes to std::experimental::function

In section 4.1 [functional.synop] of the TS, remove the specialization of uses_allocator
from the end of the <functional> synopsis:
 template<class R, class... ArgTypes, class Alloc>
 struct uses_allocator<experimental::function<R(ArgTypes...)>, Alloc>;

In section 4.2 [func.wrap.func] of the TS, modify allocator_type and all of the constructors
that take an allocator in std::experimental::function:

P0987r1: polymorphic_allocator<> instead of type-erasure Page 5 of 7

 template<class R, class... ArgTypes>
 class function<R(ArgTypes...)> {
 public:
 using result_type = R;
 using argument_type = T1;
 using first_argument_type = T1;
 using second_argument_type = T2;

 using allocator_type = erased_typestd::pmr::polymorphic_allocator<>;

 function() noexcept;
 function(nullptr_t) noexcept;
 function(const function&);
 function(function&&);
 template<class F> function(F);
 template<class A> function(allocator_arg_t,
 const Aallocator_type&) noexcept;
 template<class A> function(allocator_arg_t,
 const Aallocator_type&, nullptr_t) noexcept;
 template<class A> function(allocator_arg_t,
 const Aallocator_type&, const function&);
 template<class A> function(allocator_arg_t,
 const Aallocator_type&, function&&);
 template<class F, class A> function(allocator_arg_t,
 const A allocator_type&, F);

replace get_memory_resource() with get_allocator():
 pmr::memory_resource* get_memory_resource();
 allocator_type get_allocator() const noexcept;
 };

and remove the definition of uses_allocator:
 template<class R, class... ArgTypes, class Alloc>
 struct uses_allocator<experimental::function<R(ArgTypes...)>, Alloc>
 : true_type { };

In sections 4.2.1 [func.wrap.func.con] and 4.2.2 [func.wrap.func.mod], eliminate all
references to type erasure and memory resources:

4.2.1 function construct/copy/destroy [func.wrap.func.con]

When a function constructor that takes a first argument of type allocator_arg_t is invoked, the second
argument is treated as a type-erased allocator (5.3). If the constructor moves or makes a copy of a function
object (C++20 §20.14), including an instance of the experimental::function class template, then that
move or copy is performed by using-allocator construction with allocator get_memory_resource().

In the following descriptions, let ALLOCATOR_OF(f) be the allocator specified in the construction of
function f, experimental::pmr::get_default_resource() at the time of the construction of
f if no allocator was specified.

A function object stores an allocator object of type of std::polymorphic_allocator<>, which it
returns from get_allocator() and uses to allocate memory for its internal data structures (when needed).
In the function constructors, the allocator is initialized as follows:

P0987r1: polymorphic_allocator<> instead of type-erasure Page 6 of 7

— For the move constructor (function(function&& f)), the allocator is initialized from
f.get_allocator().

— For constructors having a first parameter of type allocator_arg_t, the allocator is initialized from
the second (allocator_type) argument.

— For all other constructors, the allocator is value initialized.

Then, if the constructor creates a target object, that target object is initialized by uses-allocator construction
with the (previously initialized) allocator and other target-object constructor arguments. [Note: if a constructor
argument of type exprimental::function&& has an allocator equal to that of the object being
constructed, the implementation can often move the target without constructing a new object. – end note]
function& operator=(const function& f);

Effects: function(allocator_arg, ALLOCATOR_OF(*this)get_allocator(),
f).swap(*this);

Returns: *this.
function& operator=(function&& f);

Effects: function(allocator_arg, ALLOCATOR_OF(*this)get_allocator(),
std::move(f)).swap(*this);

Returns: *this.
function& operator=(nullptr_t) noexcept;

Effects: If *this != nullptr, destroys the target of this.

Postconditions: !(*this). The memory resourceallocator returned by
get_memory_resource()get_allocator() after the assignment is equivalentequal to the
memory resourceallocator before the assignment. [Note: the address returned by
get_memory_resource() might change — end note]

Returns: *this.
template<class F> function& operator=(F&& f);

Constraints: declval<decay_t<F>&>() is Lvalue-Callable (C++20 §20.14.16.2) for argument types
ArgTypes... and return type R.

Effects: function(allocator_arg, ALLOCATOR_OF(*this)get_allocator(),
std::forward<F>(f)).swap(*this);

Returns: *this.

NOTE: The omission of noexcept was deliberate; move assignment can throw if *this and f
have different allocators.
template<class F> function& operator=(reference_wrapper<F> f);

Effects: function(allocator_arg, ALLOCATOR_OF(*this)get_allocator(),
f).swap(*this);

P0987r1: polymorphic_allocator<> instead of type-erasure Page 7 of 7

Returns: *this.

4.2.2 function modifiers [func.wrap.func.mod]
void swap(function& other);

Preconditions: *this->get_memory_resource() == *other.get_memory_resource()
this->get_allocator() == other.get_allocator().

Effects: Interchanges the targets of *this and other.

Remarks: The allocators of *this and other are not interchanged.

NOTE: The omission of noexcept is deliberate. When noexcept was added to swap in
C++20, swap had a wide interface (no preconditions). The addition of allocators gives swap a
narrow interface, so noexcept would violate the Lakos rule. Nevertheless, if LWG wants to
add it back, I would not have a serious objection.

Add a new section describing the get_allocator() function:
allocator_type get_allocator() const noexcept;

Returns: A copy of the allocator initialized during construction (4.2.1) of this object.

8 References
P0039r6 polymorphic_allocator<> as a vocabulary type, Pablo Halpern & Dietmar

Kühl, 2019-02-22.

N4920 Working Draft, C++ Extensions for Library Fundamentals, Version 3, Thomas Köppe,
editor, 2022-08-15.

N3916 Polymorphic Memory Resources - r2, Pablo Halpern, 2014-02-14.

