
Document Number: N4923
Date: 2022-10-14
Revises: N4906
Reply to: Michael Wong

Codeplay
fraggamuffin@gmail.com

Working Draft, Extensions to C++ for
Transactional Memory Version 2

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
formatting.

© ISO/IEC N4923

Contents
Foreword iii

1 Scope 1

2 Normative references 2

3 Terms and definitions 3

4 General 4
4.1 Implementation compliance . 4
4.2 Acknowledgments . 4

5 Lexical conventions 5
5.1 Identifiers . 5

6 Basics 6
6.9 Program execution . 6

8 Statements 8
8.1 Preamble . 8
8.8 Atomic statement . 8

15 Preprocessor 10
15.11 Predefined macro names . 10

16 Library introduction 11
16.4 Library-wide requirements . 11

Contents ii

© ISO/IEC N4923

Foreword [foreword]
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members
of ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work.
The procedures used to develop this document and those intended for its further maintenance are described in
the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of
document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC
Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or on
the ISO list of patent declarations received (see www.iso.org/patents) or the IEC list of patent declarations
received (see http://patents.iec.ch).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expres-
sions related to conformity assessment, as well as information about ISO’s adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.

Foreword iii

© ISO/IEC N4923

1 Scope [scope]
1 This document describes requirements for implementations of an interface that computer programs written

in the C++ programming language can use to express groups of operations (known as transactions) that
appear to execute atomically in relation to other transactions (concurrent or otherwise).

2 ISO/IEC 14882:2020 provide important context and specification for this document. This document is
written as a set of changes against that specification. Instructions to modify or add paragraphs are written as
explicit instructions. Modifications made directly to existing text from ISO/IEC 14882:2020 use underlining
to represent added text and strikethrough to represent deleted text.

3 This document is non-normative. Some of the functionality described by this document may be considered
for standardization in a future version of C++, but it is not currently part of any C++ standard. Some of
the functionality in this document may never be standardized, and other functionality may be standardized
in a substantially changed form.

4 The goal of this document is to build widespread existing practice for eventually adopting transactional
memory in C++.

Scope 1

© ISO/IEC N4923

2 Normative references [refs]
1 The following referenced document is indispensable for the application of this document. For dated references,

only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

—(1.1) ISO/IEC 14882:2020, Programming Languages — C++
2 ISO/IEC 14882:2020 is herein called the C++ Standard. References to clauses within the C++ Standard are

written as “C++20 §3.2”.

Normative references 2

© ISO/IEC N4923

3 Terms and definitions [defs]
1 No terms and definitions are listed in this document. ISO and IEC maintain terminological databases for use

in standardization at the following addresses:
—(1.1) IEC Electropedia: available at https://www.electropedia.org/
—(1.2) ISO Online browsing platform: available at https://www.iso.org/obp

Terms and definitions 3

© ISO/IEC N4923

4 General [general]
4.1 Implementation compliance [general.compliance]

1 Conformance requirements for this document are those defined in C++20 §4.1, as applied to a merged
document consisting of C++20 amended by this document.
[Note 1 : Conformance is defined in terms of the behavior of programs. — end note]

4.2 Acknowledgments [general.ack]
This work is the result of a collaboration of researchers in industry and academia. We wish to thank the
original authors of this document, Michael Wong, Jens Maurer, Hans Boehm, Michael Spear, Michael L.
Scott, and Victor Luchangco. We also wish to thank people who made valuable contributions within and
outside these groups, including all SG 5 members and the original TM group, and many others not named
here who contributed to the discussion.

§ 4.2 4

© ISO/IEC N4923

5 Lexical conventions [lex]
5.1 Identifiers [lex.name]
In C++20 §5.10, add atomic to the table of identifiers with special meaning (Table 4).

§ 5.1 5

© ISO/IEC N4923

6 Basics [basic]
6.9 Program execution [basic.exec]
6.9.1 Sequential execution [intro.execution]
Change in C++20 §6.9.1 paragraph 5 as indicated:

5 A full-expression is
—(5.1) ...
—(5.2) an invocation of a destructor generated at the end of the lifetime of an object other than a

temporary object (6.7.7) whose lifetime has not been extended, or
—(5.3) the start or the end of an atomic block (8.8), or
—(5.4) an expression that is not a subexpression of another expression and that is not otherwise

part of a full-expression.

6.9.2 Multi-threaded executions and data races [intro.multithread]
6.9.2.2 Data races [intro.races]
Change in C++20 §6.9.2.2 paragraph 6 as indicated:

6 Certain Atomic blocks as well as certain library calls may synchronize with other atomic blocks
and library calls performed by another thread.

Add a new paragraph after C++20 §6.9.2.2 paragraph 20:

21 The execution of an atomic block that is not dynamically nested within another atomic block is
termed a transaction.
[Note 21 : Due to syntactic constraints, blocks cannot overlap unless one is nested within the other.

— end note]
There is a global total order of execution for all transactions. If, in that total order, a transaction
T1 is ordered before a transaction T2, then

—(21.1) no evaluation in T2 happens before any evaluation in T1 and
—(21.2) if T1 and T2 perform conflicting expression evaluations, then the end of T1 synchronizes

with the start of T2.
[Note 22 : If the evaluations in T1 and T2 do not conflict, they might be executed concurrently. — end
note]

22 Two actions are potentially concurrent if ...

Change in C++20 §6.9.2.2 paragraph 21:

21 ...
[Note 21 : It can be shown that programs that correctly use mutexes, atomic blocks, and memory_-
order::seq_cst operations to prevent all data races and use no other synchronization operations behave
as if the operations executed by their constituent threads were simply interleaved, with each value
computation of an object being taken from the last side effect on that object in that interleaving. This is
normally referred to as "sequential consistency". ... — end note]

Add a new paragraph after C++20 §6.9.2.1 paragraph 21:

22 [Note 22 : The following holds for a data-race-free program: If the start of an atomic block T is sequenced
before an evaluation A, A is sequenced before the end of T , A strongly happens before some evaluation
B, and B is not sequenced before the end of T , then the end of T strongly happens before B. If an
evaluation C strongly happens before that evaluation A and C is not sequenced after the start of T , then
C strongly happens before the start of T . These properties in turn imply that in any simple interleaved
(sequentially consistent) execution, the operations of each atomic block appear to be contiguous in the
interleaving. — end note]

§ 6.9.2.2 6

© ISO/IEC N4923

6.9.2.3 Forward progress [intro.progress]
Change in C++20 §6.9.2.3 paragraph 1 as indicated:

1 The implementation may assume that any thread will eventually do An inter-thread side effect
is one of the following:

—(1.1) terminate,
—(1.2) a call to a library I/O function,
—(1.3) an access through a volatile glvalue, or
—(1.4) a synchronization operation or an atomic operation (Clause 31).

The implementation may assume that any thread will eventually terminate or evaluate an
inter-thread side effect.
[Note 1 : This is intended to allow compiler transformations such as removal of empty loops, even when
termination cannot be proven. — end note]

§ 6.9.2.3 7

© ISO/IEC N4923

8 Statements [stmt.stmt]
8.1 Preamble [stmt.pre]

1 Add a production to the grammar in C++20 §8.1 as indicated:

statement :
labeled-statement
attribute-specifier-seqopt expression-statement
attribute-specifier-seqopt compound-statement
attribute-specifier-seqopt selection-statement
attribute-specifier-seqopt iteration-statement
attribute-specifier-seqopt jump-statement
declaration-statement
attribute-specifier-seqopt try-block
atomic-statement

Add a new subclause before C++20 §8.8:

8.8 Atomic statement [stmt.tx]
atomic-statement :

atomic do compound-statement
1 An atomic-statement is also called an atomic block.
2 The start of the atomic block is immediately after the opening { of the compound-statement.

Evaluation of the end of the atomic block occurs when the invocation of the destructor for a
hypothetical automatic variable of class type declared at the start of the atomic block would
happen (8.7.1).
[Note 1 : Thus, variables with automatic storage duration declared in the compound-statement are
destroyed prior to reaching the end of the atomic block; see 8.7. — end note]

3 A case or default label appearing within an atomic block shall be associated with a switch
statement (8.5.3) within the same atomic block. A label (8.2) declared in an atomic block shall
only be referred to by a statement in the same atomic block.

4 If the execution of an atomic block evaluates an inter-thread side effect (6.9.2.3) or if an atomic
block is exited via an exception, the behavior is undefined.

5 Recommended practice: In case an atomic block is exited via an exception, the program should
be terminated without invoking a terminate handler (17.9.5) or destroying any objects with static
or thread storage duration (6.9.3.4).

6 If the execution of an atomic block evaluates any of the following outside of a manifestly constant-
evaluated context (7.7), the behavior is implementation-defined:

—(6.1) an asm-declaration (9.10);
—(6.2) an invocation of a function, unless

—(6.2.1) the function is inline with a reachable definition or
—(6.2.2) the function is a library function that may be used in an atomic block 16.4.6.17;

—(6.3) a virtual function call (7.6.1.3);
—(6.4) a function call, unless overload resolution selects

—(6.4.1) a named function (12.4.2.2.2) or
—(6.4.2) a function call operator (12.4.2.2.3), but not a surrogate call function;

—(6.5) a co_await expression (7.6.2.4), a yield-expression (7.6.17), or a co_return statement (8.7.5);
—(6.6) dynamic initialization of a block-scope variable with static storage duration; or
—(6.7) dynamic initialization of a variable with thread storage duration. [Note: That includes the

case when such an initialization is evaluated within an atomic block because the initialization
was deferred (6.9.3.3). -- end note]

§ 8.8 8

© ISO/IEC N4923

[Note 2 : The implementation can define that the behavior is undefined in some or all of the cases above.
— end note]
[Example 1 :

unsigned int f()
{

static unsigned int i = 0;
atomic do {

++i;
return i;

}
}

Each invocation of f (even when called from several threads simultaneously) retrieves a unique value
(ignoring wrap-around). — end example]
[Note 3 : Atomic blocks are likely to perform best where they execute quickly and touch little data. — end
note]

§ 8.8 9

© ISO/IEC N4923

15 Preprocessor [cpp]
15.11 Predefined macro names [cpp.predefined]
Add a row to Table 19 in C++20 §15.11:

Table 19: Feature-test macros

Macro name Value
__cpp_transactional_memory 202110

§ 15.11 10

© ISO/IEC N4923

16 Library introduction [library]
16.4 Library-wide requirements [requirements]
Add a new subclause after C++20 §16.4.6.16:

16.4.6.17 Functions usable in an atomic block [atomic.use]
1 All library functions may be used in an atomic block (8.8), except

—(1.1) error category objects (19.5.3.5)
—(1.2) time zone database (19.5.3.5)
—(1.3) clocks (27.7)
—(1.4) signal (17.13.5) and raise (17.13.4)
—(1.5) set_new_handler, set_terminate, get_new_handler, get_terminate (16.4.5.7, 17.6.4,

17.9.2)
—(1.6) system (17.2.2)
—(1.7) startup and termination (17.5) except abort

—(1.8) shared_ptr (20.11.3) and weak_ptr (20.11.4)
—(1.9) synchronized_pool_resource (20.12.5)
—(1.10) program-wide memory_resource objects (20.12.4)
—(1.11) setjmp / longjmp (17.13.3)
—(1.12) parallel algorithms (25.3)
—(1.13) random_device (26.6.7)
—(1.14) locale construction (28.3.1.3)
—(1.15) locale::global (28.3.1.6)
—(1.16) input/output (Clause 29)
—(1.17) atomic operations (Clause 31)
—(1.18) thread support (Clause 32)

§ 16.4.6.17 11

	Foreword
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 General
	4.1 Implementation compliance
	4.2 Acknowledgments

	5 Lexical conventions
	5.1 Identifiers

	6 Basics
	6.9 Program execution
	6.9.1 Sequential execution
	6.9.2 Multi-threaded executions and data races
	6.9.2.2 Data races
	6.9.2.3 Forward progress

	8 Statements
	8.1 Preamble
	8.8 Atomic statement

	15 Preprocessor
	15.11 Predefined macro names

	16 Library introduction
	16.4 Library-wide requirements
	16.4.6.17 Functions usable in an atomic block

