
reference_wrapper Associations
Document Number: P2380R0
Date: 2021-05-15
Reply-to: Robert Leahy <rleahy@rleahy.ca>
Audience: SG4

Abstract
This paper proposes that associated_allocator and associated_executor have
specializations for reference_wrapper<T>.

Background
The Networking TS [1] provides “associators” (§13.2.6 [async.reqmts.associator])
(associated_allocator and associated_executor) which allow types and instances of
certain named typed requirements (ProtoAllocator and Executor respectively) to be
retrieved through a completion handler. The asynchronous model proposed by the Networking
TS uses these associators to obtain executors and allocators for use in its operations.

reference_wrapper has been a part of standard C++ since C++11 and allows references to be
transported inside a wrapper which behaves as one would expect a C++ class to: Assignable, et
cetera. Moreover if the target of a reference_wrapper models the named type requirement
Callable then reference_wrapper itself models this named type requirement.

Motivation
The standard provides reference_wrapper to enable the use of reference semantics with
Callable objects where the algorithms, types, et cetera in question are written with value
semantics (for example the standard algorithms accept their predicates and operations by
value). The fact that the Networking TS doesn’t provide specializations of
associated_allocator and associated_executor for reference_wrapper<T> means that
reference_wrapper can’t fill this niche out of the box when interacting with Networking TS
operations with completion handlers which customize the associated ProtoAllocator and/or
Executor.

Being unable to use reference_wrapper in these situations is the best case scenario. More
problematic is the possibility that users (accustomed to reaching for reference_wrapper when
they need to pass a Callable by reference) will be unaware of the fact that the Networking TS
does not provide the requisite specializations and will use reference_wrapper in such
situations notwithstanding. Particularly where the Executor association has been customized



this would likely lead to the user unknowingly writing incorrect code: Their synchronization
and/or execution requirements would not be honored which could be the difference between
their program being data race free and containing undefined behavior.

Proposed Changes
§13.1 [async.synop]:

template<class T, class ProtoAllocator = allocator<void>>

struct associated_allocator;

template<class T, class ProtoAllocator>

struct associated_allocator<reference_wrapper<T>>;

[...]

template<class T, class Executor = system_executor>

struct associated_executor;

template<class T, class Executor>

struct associated_executor<reference_wrapper<T>>;

§13.5 [async.assoc.alloc]

namespace std {

namespace experimental {

namespace net {

inline namespace v1 {

template<class T, class ProtoAllocator = allocator<void>>

struct associated_allocator

{

using type = see below ;

static type get(const T& t, const ProtoAllocator& a = ProtoAllocator())

noexcept;

};

template<class T, class ProtoAllocator>

struct associated_allocator<reference_wrapper<T>>

{

using type = typename associated_allocator<T>::type;



static type get(reference_wrapper<T> t, const ProtoAllocator& a =

ProtoAllocator()) noexcept;

};

} // inline namespace v1

} // namespace net

} // namespace experimenta

} // namespace std

§13.5.2 [async.assoc.alloc.refwrap]

type get(reference_wrapper<T> t, const ProtoAllocator& a = ProtoAllocator())

noexcept;

Returns: associated_allocator<T>::get(t.get(), a).

§13.12 [async.assoc.exec]

namespace std {

namespace experimental {

namespace net {

inline namespace v1 {

template<class T, class Executor = system_executor>

struct associated_executor

{

using type = see below ;

static type get(const T& t, const Executor& e = Executor()) noexcept;

};

template<class T, class Executor>

struct associated_executor<reference_wrapper<T>>

{

using type = typename associated_executor<T>::type;

static type get(reference_wrapper<T> t, const Executor& e = Executor())

noexcept;

};

} // inline namespace v1

} // namespace net

} // namespace experimental

} // namespace std



§13.12.2 [async.assoc.exec.refwrap]

type get(reference_wrapper<T> t, const Executor& e = Executor()) noexcept;

Returns: associated_executor<T>::get(t.get(), e).

References
[1] J. Wakely. Working Draft, C++ Extensions for Networking N4771


