
Document Number: p1701r2
Date: 2021-05-04
To: SC22/WG21 EWG

Reply to: Nathan Sidwell nathan@acm.org

Inline Namespaces: Fragility Bites
Nathan Sidwell

Inline namespaces were added with the goal of allowing vendors to provide different source-compatible
and link-interoperable library variants. Unfortunately there was at least one defect with the design, and
that has opened the door to a conflicting unexpected use.

Since presenting R0 at the Cologne 2019 meeting, another issue has come to light. Given the guidance
from EWG an alternative solution is presented. This R2 update follows an EWG meeting and presents
options in Tony-Table form along with suggested wording.

1 Background
Inline namespaces introduce a named scope that is almost invisible. Users do not need to name the
scope in order to access members within. Qualified and unqualified namespace-scope name lookup is
modified to also search inline namespace nests, adding any found entities to the lookup set.

The intent is to be able to write:

namespace std {
#ifdef SMALL_STRING_OPTIMIZATION
inline namespace __sso
#endif

template <typename T> string
 { /* details unimportant. */ }

#ifdef _SMALL_STRING_OPTIMIZATION
}
#endif
}

The user of the vendor’s library can name ‘string’ with ‘std::string’. The vendor can provide different
flavours of ‘string’ depending on _SMALL_STRING_OPTIMIZATION. Howard Hinnant noted:

Despite the weaknesses, I can report the transition period went remarkably smoothly.
libstdc++’s COW string never got confused at run-time with libc++’s SSO string.

p1701r2:Inline Namespaces: Fragility Bites - 1 - Nathan Sidwell

p1701r2:Inline Namespaces: Fragility Bites - 2 - Nathan Sidwell

An unqualified declaration does not redeclare a declaration visible in an inline namespace nest,
however a qualified name does:

inline namespace A {
 void foo () {} // #1
 void bar () {} // #2
}

void foo () {} // OK, not redefinition of #1
void ::bar () {} // ERROR, redefinition of #2

However, template specializations do locate their general template within an inline namespace:

inline namespace A {
 template <int I> void foo () {} // #1
}

template<> void foo<1> () {} // OK, specializes #1

1.1 DR2061
Core DR20611 concerns a problem introduced by resolving DR1795:2

After the resolution of issue 1795, 10.3.1 [namespace.def] paragraph 3 [...] appears to break
code like the following:

 namespace A {
 inline namespace b {
 namespace C {
 template<typename T> void f();
 }
 }
 }

 namespace A {
 namespace C {
 template<> void f<int>() { }
 }
 }

because (by definition of “declarative region”) C cannot be used as an unqualified name to
refer to A::b::C within A if its declarative region is A::b.

1 https://wg21.link/cwg2061
2 https://wg21.link/cwg 1795

p1701r2:Inline Namespaces: Fragility Bites - 3 - Nathan Sidwell

https://wg21.link/cwg2061
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1795
https://wg21.link/cwg2061
https://wg21.link/cwg2061

Proposed resolution (September, 2015):

Change 10.3.1 [namespace.def] paragraph 3 as follows:

In a named-namespace-definition, the identifier is the name of the namespace. If the
identifier, when looked up (6.4.1 [basic.lookup.unqual]), refers to a namespace-name (but
not a namespace-alias) that was introduced in the declarative region namespace in which
the named-namespace-definition appears or that was introduced in a member of the
inline namespace set of that namespace, the namespace-definition extends the
previously-declared namespace. Otherwise, the identifier is introduced as a namespace-
name into the declarative region in which the named-namespace-definition appears.

I.e when opening a namespace N, look for Ns indirectly reachable via nested inline namespaces. It is
only if there are no such Ns that we create a new namespace.

This behaviour is different to other unqualified declarations, as described in Section 1, where no such
inline namespace search occurs.

2 Bug Reports and Surprises
I implemented DR2061 in GCC 8. It caused several bug reports to be raised. During implementation I
encountered a difficulty with unnamed namespaces, which as discussed below, is another issue with the
DR’s resolution.

2.1 PR90291
Bug report PR902913 was raised. The bug reporter relates that their software’s organization has the
following hierarchy:

inline namespace A {
 namespace detail { // #1
 void foo() {} // #3
 }
}

namespace detail { // #2
 inline namespace C {
 void bar() {} // #4
 }
}

The intent is to have functions A::detail::foo (#3) and detail::C::bar (#4). However, with
DR2061 implemented, the namespace declaration #2 no longer creates a new top-level

3 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291

p1701r2:Inline Namespaces: Fragility Bites - 4 - Nathan Sidwell

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291

namespace, but locates the previously opened A::detail at #1. Thus the second function’s fully
qualified name is A::detail::C::bar.

As the reporter expands in comments 6 & 7, A is a utility component name:

// header file
namespace component {
 inline namespace utility {
 namespace detail {
 // stuff
 }
 }
}

// source file
#include “header file”
namespace component {
 namespace detail {
 // oops, component::utility::detail
 }
}

If two different headers use the same hierarchy, but with different ‘utility’ names, a user that includes
both will discover that detail has become a poisoned namespace, as any attempt to open it will result in
an ambiguous lookup.

This problem was discussed on the core mailing list.4 Gaby dos Reis commented that while DR2061 is
addressing the issue it intends to address:

However, this is already extremely fragile: if the namespace is also opened
before including the header [example] ... then this doesn't work: #2 reopens #3 instead of
#1.

However, inline namespaces have *also* been adopted for another behavior
entirely unrelated to versioning: as a way of providing an optional
namespace name component (eg, std::inline literals::inline chrono_literals,
or the example in that GCC bug report). In that guise, it is not reasonable
to look through the inline namespace set when considering reopening a
namespace.

Davis Herring suggested:

... any namespace declaration that would cause a subsequent (fully-qualified) namespace
lookup to be ambiguous due to inline namespaces should be rejected immediately.

4 http://lists.isocpp.org/core/2019/04/6102.php

p1701r2:Inline Namespaces: Fragility Bites - 5 - Nathan Sidwell

http://lists.isocpp.org/core/2019/04/6102.php

That is, not accepting DR2061, but making namespace definition #2 in the bug report example above
ill-formed due to it (also) matching definition #1.

GCC 8 was released in May 2018, PR90291 was filed in April 2019. I note the following related PRs,
both fallout from implementing DR2061

• 87155,5 anonymous namespaces inside inline namespaces (see Section 2.2)

• 81064,6 libstdc++ breakage, because it had exactly this structure. The library was changed.

Given those issues, and Richard Smith’s comment that:

Clang intends to implement DR2061, but it looks like we get it wrong in some ways …

perhaps DR2061’s direction is suboptimal?

2.2 Unnamed Namespaces
The standard specifies:

An unnamed-namespace-definition behaves as if it were replaced by

inlineopt namespace unique { /* empty body */ }
using namespace unique ;
namespace unique { namespace-body }

… all occurrences of unique in a translation unit are replaced by the same identifier, and
this identifier differs from all other identifiers in the translation unit

 [namespace.unnamed]

This wording means that placing an unnamed namespace inside an inline namespace could cause issues
with other unnamed namespaces within the same inline namespace nest:

namespace {}
inline namespace bob {
 namespace {}
}

namespace {} // error, ambiguous

In addressing PR87155 (& PR89068) I accepted the above by not searching an inline namespace nest
when opening an unnamed namespace. Again, this was discussed on the core mailing list.7 That
discussion concluded this was well-formed, but it predates the above-mentioned DR2061 discussion,
and I now consider the argument incomplete.

5 https://gcc.gnu.org/bugzilla/show_bug.cgi?id= 87155
6 https://gcc.gnu.org/bugzilla/show_bug.cgi?id= 81064
7 http://lists.isocpp.org/core/2018/08/4912.php

p1701r2:Inline Namespaces: Fragility Bites - 6 - Nathan Sidwell

http://lists.isocpp.org/core/2018/08/4912.php
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291

2.3 Modules
Consider:

export module Impl;
inline namespace A {
 namespace B {
 export void Widget ();
 }
}

export module User;
import Impl; // Internal use
namespace B {
 export void Frobber (); // #2
}

User has a silent ABI dependence on Impl – Frobber is actually in A::B::Frobber. If User no longer
needs to import Impl, the code will continue to compile without error, but User’s ABI stability will
have been broken.

The only way User may defend against this is by not importing any modules, and not including
anything in its Global Module Fragment.

If DR2061 was not in effect, there would be no such ABI fragility. A failure mode would manifest as
compilation errors due to the ambiguity of ::B and ::A::B during name lookup. This could occur in
User, but only in importers of User if they also imported Impl (or namespace ::A becomes visible to
name lookup via some other import or declaration).

3 Discussion
The use shown in PR90291 conflicts with the direction taken in DR2061. The user’s rationale is
reasonable. That the report was nearly a year after compiler release is probably indicative of the user’s
compiler-update cadence (rather than bug obscurity). As G dos Reis notes, a scheme with similar
behaviour is now used in the STL. GCC encountered a few other bug reports related to the DR2061
change, and has implemented a workaround for that change in the unnamed namespace case.

3.1 Cologne 2019
At the Cologne meeting, EWG gave guidance that neither of the two options presented:

Although no formal polls were taken, the opinion was expressed that unnamed namespaces at different
levels of an inline hierarchy should continue to work as they had done prior to DR2061. Also, there
was no preference for either of the two options presented:

p1701r2:Inline Namespaces: Fragility Bites - 7 - Nathan Sidwell

1. When a namespace definition uses a qualified name, should lookup of the qualifying names
search inline namespaces? That would match the behaviour of other qualified-name
declarations, but break the equivalence between using a qualified name, or an explicit nest of
namespace definitions.

2. (If answer 1 is ‘no’), should an approach suggested by D Herring be taken, and prevent creating
new namespaces whose name matches an existing namespace within their local inline
namespace nest?

Both were equally disliked.

3.2 Kobayashi Maru
Given the dislike of solutions modifying DR2061’s behaviour, let us reexamine the motivation for
DR2061. DR2061 is motivated by the following user code, specializing a standard library template:

namespace std {
namespace ranges {
template<> constexpr bool disable_sized_range<MyType> = true;
}
}

Prior to DR2061, the user code will fail to compile if the library has inserted an inline namespace
between std and ranges. Should the user have used the qualified name
std::ranges::disable_sized_range, all would be well.

DR2061 has exchanged a fixable compilation error, for the possibility of silent ABI changes and latent
poisoning of namespace names. Further it has added an exception to the rule that unqualified names
that can declare new named entities only consider the current namespace. These do not seem equitable
transactions.

3.3 Summer ’20
Revision 1 of this paper was presented to EWG virtual meeting in the summer of 2020. In addition to
the simple reversal of DR2061, EWG would like to consider more closely, primarily via a Tony Table,
a few alternatives, also raised at the Cologne ‘19 meeting.

0 Status Quo C++ 20

1 Revert DR2061 Pre-dr2061 behaviour, ‘namespace Foo’ ignores any inline
namespace set of the current namespace.

2 Open qualified namespace As #1 but when opening a qualified namespace name behave more
like other qualified name lookups and consider inline namespace sets
for each component of the name lookup.

p1701r2:Inline Namespaces: Fragility Bites - 8 - Nathan Sidwell

3 Check Inline Nest It is ill-formed to create a namespace such that an inline-namespace
set contains an ambiguous namespace lookup. (From D Herring)

Any combination of #1-#3 could be applied.

#3 prevents inadvertently creating ambiguous lookups, at the point of creation, rather than discovery.

#2 is somewhat orthogonal, but has been mentioned in discussions of this paper. In the absence of #1,
it is the status quo. It is intended to make using a qualified name to declare a namespace consistent with
uses of qualified names in other declarations. As opening a qualified namespace name is specified as a
sequence of unqualified openings, the existing behaviour of searching inline namespace sets provides
this behaviour. If #1 is accepted, additional wording is needed to retain this behaviour. Some finessing
may be required in avoiding using directives and how to handle creation to avoid breaking existing
source.

Namespace Poisoning
0 1 1+2 3

Status Quo Revert
DR2061

+Qualified
Lookup

Check Nest

namespace B {
inline namespace V1 {} // B::V1
namespace C {} // B::C
}

namespace B::V1::C {}
Create B::V1::C

😊
Error, ambiguates

B::C

namespace B {
namespace C { … }
} 💀

Error ambiguous
Enter B::C

Enter B::C 😊
Enter B::C

(There is no
B::V1::C)namespace B::C {...} 💀

Error ambiguous

p1701r2:Inline Namespaces: Fragility Bites - 9 - Nathan Sidwell

Intermediate inline
namespace

0 1 1+2 3

Status Quo Revert
DR2061

Qualified
Lookup

Check Nest

namespace std {
inline namespace V1 { // std::V1
namespace ranges { // std::V1::ranges
template <typename T> class X {…};
}}}

namespace std {
namespace ranges {
template<>
class X<myclass> {…};
}
}

😊
Enter

std::V1::ranges,
specialize X

💀
Error, creates
std::ranges,

cannot find X

💀
Error, creates
std::ranges,

cannot find X

(if #1 or #2 in play)
😊

Error, ambiguates
std::V1::ranges

namespace std::ranges {
template<>
class X<myclass> {…};
}

😊
Enter

std::V1::ranges,
specialize X

(if only #1 in play)
😊

Error, ambiguates
std::V1::ranges

template<>
class
std::ranges::X<myclass>
{…};

😊
Specialize std::V1::ranges::X

Innermost inline namespace
0 1 1+2 3

Status Quo Revert
DR2061

Qualified
Lookup

Check Nest

namespace std {
inline namespace V1 { // std::V1
template <typename T> class Y {…};
}

namespace std {
template<>
class Y<myclass> {…};
}

😊
Enter std, specialize V1::Y

template<>
class std::Y<myclass> {…};

😊
Specialize std::V1::Y

To address the confusion about the uniqueness of the fabricated name for an unnamed-namespace-
definition there are two options:

(a) All unnamed-namespace-defnitions use the same fabricated name, or

p1701r2:Inline Namespaces: Fragility Bites - 10 - Nathan Sidwell

(b) All unnamed-namespace-definitions with different containing scopes use different fabricated
names.

(a) means that it is possible to construct unreopenable inaccessible inline unnamed namespace sets
(unless D Herring’s suggestion prohibits them). (b) removes the possibility of that happening.

I believe (a) is the Status Quo, and its implication is that, in general, there can be at most one unnamed
namespace with, or reachable from, an inline namespace set, if one wishes to reopen that anonymous
namespace. There was considerable dissatisfaction with the observed failure mode, as mentioned
above.

(a) (b) (a) + #3

Status quo Same Unique
Identifier

Scope-dependent
Unique

Identifier

Same Unique Identifier,
No Ambiguous

Hierarchies

inline namespace {}

namespace {
 namespace {}
}

Constructs <anon>::<anon> 😊
Error, would create

ambiguous hierarchy

namespace {} ? 💀
Ambiguous
<anon> or

<anon>::<anon>?

😊
Enters <anon>

4 Proposal
1) Revert DR2061, restoring the prior behaviour of only searching the current namespace. Specifically:

Change 9.8.2.1 [namespace.def.general] paragraph 2 as follows:

In a named-namespace-definition D, the identifier is the name of the namespace. The
identifier is looked up by searching for it in the scopes of the namespace A in which D
appears and of every element of the inline namespace set of A. If the lookup finds a
namespace-definition for a namespace N, D extends N, and the target scope of D is the
scope to which N belongs. If the lookup finds nothing, the identifier is introduced as a
namespace-name into A.

2) Add a library note that as specializations of templates may be declared ‘anywhere the primary
template may be defined’ [tmpl.expl.spec]/3, user specializations of library templates should be
declared using a qualified name so that inline namespace sets are searched for the template. (There
appears to be compiler divergence on permitting such out-of-scope declarations.)

p1701r2:Inline Namespaces: Fragility Bites - 11 - Nathan Sidwell

Alter [namespace.std]/2:

Unless explicitly prohibited, a program may add a template specialization for any standard
library class template to namespace std provided that (a) the added declaration depends on
at least one program-defined type and (b) the specialization meets the standard library
requirements for the original template.167 [Note: As vendors may insert inline namespaces
inside std, user specializations of library-provided templates should avoid using nested
[unqualified][1] named-namespace-definitions to enter the template’s scope.

[Example:

template<>
constexpr bool std::ranges::disable_sized_range<MyType>
 = true;

– end example] – end note]

[1] If the qualified namespace opening change is accepted, this note should be restricted to nested
unqualified namespace declarations.

3) If the qualified namespace opening change (#2) is accepted, add wording to alter opening a nest of
namespaces using a qualified name:

Replace [namespace.def.general]/8:

A nested-namespace-definition with an enclosing-namespace-specifier E, identifier I and
namespace-body B is equivalent to

namespace E { inlineopt namespace I { B } }

where the optional inline is present if and only if the identifier I is preceded by inline.

[Example 2 :

namespace A::inline B::C {
 int i;
}

The above has the same effect as:

namespace A {
 inline namespace B {
 namespace C {
 int i;
 }
 }
}

p1701r2:Inline Namespaces: Fragility Bites - 12 - Nathan Sidwell

— end example]

with:

A nested-namespace-definition performs a series of lookups for each component of the
enclosing-namespace-specifier, and the final identifier. The inline namespace sets of
each searched namespace are also searched. If the lookup finds nothing, the
component is introduced as a namespace member of the directly searched namespace.
The final namespace is extended. If a component of the enclosing-namespace-specifier,
or the final identifier, is preceded by inline, the found namespace (if any) must be an
inline namespace. When creating a new namespace, a preceding inline causes an
inline namespace to be created.

[Example 2:

namespace A::inline B::C {
 int i;
}
namespace A::C {
 int i; // error, redefinition of A::B::C::i
}

– end example]

4) If D Herring’s suggestion (#3) is accepted, add wording to make it ill-formed to create ambiguous
namespace hierarchies:

Add new paragraph [namespace.def.general]/7½:

When a new namespace is to be created, it is ill-formed if the new namespace name is
the same as the name of an existing member[1] of the innermost enclosing non-inline
namespace or its inline-namespace set.

[1] Should ‘member’ be restricted to members that are namespaces?

5) Adjust [namespace.unnamed]/1 To make it clear that either all unnamed namespaces use the same
unique identifier, or that unnamed namespaces with different containing scopes use different unique
identifiers.

5.1) Option A: they are all the same:

Alter [namespace.unnamed]/1

An unnamed-namespace-definition behaves as if it were replaced by

inlineopt namespace unique { /* empty body */ }
using namespace unique ;
namespace unique { namespace-body }

p1701r2:Inline Namespaces: Fragility Bites - 13 - Nathan Sidwell

where inline appears if and only if it appears in the unnamed-namespace-definition and
every unnamed-namespace-definition in a translation unit replaces all occurrences of
unique in a translation unit are replaced bywith the same identifier, and this identifier
differs from all other identifiers in the translation unit. The optional attribute-specifier-seq
in the unnamed-namespace-definition appertains to unique.

5.2 Option B: they are all different, but scope-dependent:

Alter [namespace.unnamed]/1

An unnamed-namespace-definition behaves as if it were replaced by

inlineopt namespace unique { /* empty body */ }
using namespace unique ;
namespace unique { namespace-body }

where inline appears if and only if it appears in the unnamed-namespace-definition and all
occurrences of unique in each scope in a translation unit are replaced by the same scope-
specific identifier, and this identifier differs from all other identifiers in the translation unit.
The optional attribute-specifier-seq in the unnamed-namespace-definition appertains to
unique.

4.1 Ship Vehicle
A DR against C++20

5 Revision History
R0 First version

R1 Added Modules case, documented Cologne guidance, suggested resolution.

R2 Added EWG-requested Tony Table, alternative suggestions and wording options.

p1701r2:Inline Namespaces: Fragility Bites - 14 - Nathan Sidwell

	1 Background
	1.1 DR2061

	2 Bug Reports and Surprises
	2.1 PR90291
	2.2 Unnamed Namespaces
	2.3 Modules

	3 Discussion
	3.1 Cologne 2019
	3.2 Kobayashi Maru
	3.3 Summer ’20

	4 Proposal
	4.1 Ship Vehicle

	5 Revision History

