
More flexible optional::value or()

Marc Mutz

Document #: P2218R0
Date: September 15, 2020
Audience: LEWGI
Reply-to: Marc Mutz <marc.mutz@kdab.com>

Abstract

We propose to extend the value or() member function template in optional in three ways:
1. Adding a default template argument to make requesting default-constructed values simpler:

// now // proposed:

opt.value_or(Type {}); opt.value_or ({});

This brings value or() in line with other functions (most prominently exchange()).
2. Adding a new emplace-like overload:

// now // proposed:

opt.value_or(Type {}); opt.value_or_construct ();

This optimizes value or() for types that are expensive to construct.
3. Adding a lazy version of the latter:

// proposed:

opt.value_or_else ([] -> Type { return {}; });

further optimizing value or construct() at the cost of more verbosity.

Contents

1 Motivation and Scope 2
1.1 How the C++ Developer Became a Gardener . 2
1.2 Defaulting value or()’s template argument . 2
1.3 Adding emplace-like value or construct() . 3
1.4 Adding lazy value or else() . 4

2 Impact on the Standard 4

3 Proposed Wording 4

4 Design Decisions 6
4.1 Naming . 6

5 Acknowledgements 7

6 References 7

1

mailto:marc.mutz@kdab.com

1 Motivation and Scope

When using optional::value or(), more often than not, the fall-back value passed is some form
of default-constructed value:

optional <int > oi = ~~~; // (1)

use(oi.value_or (0));

optional <bool > ob = ~~~; // (2)

use(ob.value_or(false));

optional <string > os = ~~~; // (3)

use(os.value_or(nullptr)); // (a)

use(os.value_or("")); // (b)

use(os.value_or ({})); // (c)

use(os.vlue_or(string {}); // (d)

optional <vector <string >> ov = ~~~;

use(ov.value_or (~~~???~~~)); // (4)

While this works fine in case of built-in types (1, 2), it already fails to be convenient when the
payload type is a user-defined type without literals.

1.1 How the C++ Developer Became a Gardener

Here’s the tale of a C++ developer trying to use value or() in the string case (3): The developer
first tries to use nullptr (a), which crashes on him at runtime due to [char.traits.require]/1
in conjunction with [string.cons]/13. The next try (b) succeeds, but may invoke an unnecessary
“strlen”, so he’s told in review to use the string default constructor instead. So the developer
tries (c) which fails to compile because {} fails to deduce the template argument of value or(),
which is not defaulted, as e.g. the second argument of exchange() is. Grumpily, the developer
caves in and repeats the type name of the optional’s value type (d).

The next day, he’s asked to use a optional<vector<string>> (4) and decides to quit and become
a gardener instead.

We propose two different, orthogonal, solutions to the problem:

• Default the value or template argument, so value or({}) works, and/or

• Add an emplacement-like function value or construct(auto&&...), so that value or construct()

works.

The latter addition gives rise to:

• Add a lazy version, value or else(Func&&).

1.2 Defaulting value or()’s template argument

With this change, we’d like to ensure that value or({}) works, like exchange(var, {}) does.

We can’t just default like this:

2

https://wg21.link/char.traits.require#1
https://wg21.link/string.cons#13

template <typename T>

class optional {

public:

~~~~

template <typename U = T>

T value_or(U&&) const;

};

as that would prevent moving the argument into the return value when T is cv-qualified (as in
optional<const string>). It follows that we need to remove cv-qualifiers. We don’t need to re-
move references, as optional<T&> is ill-formed. If and when optional references become supported,
this needs to be rethought.

template <typename T>

class optional {

public:

~~~~

template <typename U = remove_cv_t <T>>

T value_or(U&&) const;

};

This enables developers to write value or({}), which is self-explanatory, as long as you know
value or() as currently specified.

It also enables all other braced initializers, not just {}, to be passed to value or().

1.3 Adding emplace-like value or construct()

The second change was suggested to the author in very early discussions on the LEWG(I) reflector:
If value or() was a variadic emplace-like function, then opt.value or() would return a default-
constructed value if opt is not engaged.

While this extension would be SC and BC1, this author does not believe that value or() is a
good name for such a function: What does opt.value or() look like? Can a developer that
knows value or() as currently specified make sense of this expression? This author doubts that
very much. To him, this looks like “value or nothing”. Then what’s the “nothing” that’s being
returned? Another optional specialisation?

So, it seems to this author that just making value or() emplace-like would be counter-intuitive,
but at the same time such functionality could be useful. E.g., even if value or({}) was enabled
(as per Section 1.2), that call would create a default-constructed T which is then moved into the
return value, instead of default-constructing the return value directly. Adding a new function for
this purpose seems the best way forward.

Taking a cue from existing factory functions in the standard (Allocator::construct()), this
author ended up with value or construct() as the suggested name for the variadic function. See
Section 4.1 for alternative names.

1The variadic version could overload the existing unary version by constraining the variadic version to
sizeof...(Args) != 1

3

1.4 Adding lazy value or else()

The third change was also suggested in the initial discussion on the LEWG(I) mailing list. While
value or construct() already defers contruction of the T to when it is actually needed, it still
requires construction of the arguments of construction. For cases where even that is too much, this
author suggests to add a lazy version, value or else(), too:

optional <vector <string >> opt = ~~~;

// this works today , with optimal efficiency , but only for lvalues:

auto v0 = opt ? *opt : vector{"Hello"s, "world"s} ;

// value_or constructs a full vector even when not needed:

auto v1 = opt.value_or ({"Hello"s, "World"s});

// value_or_construct () still constructs an initializer_list <string >:

auto v2 = opt.value_or_construct ({"Hello"s, "World"s});

// value_or_else () would construct nothing:

auto v3 = opt.value_or_else ([] { return vector{"Hello"s, "World"s}; });

While value or construct() and value or else() solve the same problem, this author thinks
that they have sufficient drawbacks each to warrant adding both, to wit:

• value or construct() may be very inefficient, asking to construct possibly-expensive con-
structor arguments before we know they’re needed. Without value or else(), the developer
is required to perform a manual check (cf. v0 above), which only works for lvalues.

• value or else() may be too complex and/or verbose, with no efficiency gains compared to
value or construct() when passing cheap contructor arguments:

optional <QPen > opt = ~~~;

auto c1 = opt.value_or(Qt::NoPen); // passing an enum value is cheap

auto c2 = opt.value_or_construct(Qt::NoPen); // ditto

auto c3 = opt.value_or_else ([]{ return Qt::NoPen; }); // needlessly verbose

2 Impact on the Standard

Only positive. Expressions enabled by this proposal make the use of optional::value or() easier
and more consistent with the rest of the standard library, in particular, std::exchange(). At the
same time, no existing code is broken, because the status quo cannot accept braced intializers as
value or() arguments.

3 Proposed Wording

All wording is relative to [N4861]:

• In [version.syn], add a feature macro cpp lib optional value or with the value calcu-
lated as usual and comment “// also in <optional>”.

• Change [optional.optional] as indicated:

4

https://wg21.link/version.syn
https://wg21.link/optional.optional

constexpr const T&& value() const &&;

- template <class U> constexpr T value_or(U&&) const &;

- template <class U> constexpr T value_or(U&&) &&;

+ template <class U=remove_cv_t <T>> constexpr T value_or(U&&) const&;

+ template <class U=remove_cv_t <T>> constexpr T value_or(U&&) &&;

+ template <class ... Args > constexpr T value_or_construct(Args &&... args) const&;

+ template <class ... Args > constexpr T value_or_construct(Args &&... args) &&;

+ template <class U, class ... Args > constexpr T value_or_construct(initializer_list <U> il , Args &&... args) const&;

+ template <class U, class ... Args > constexpr T value_or_construct(initializer_list <U> il , Args &&... args) &&;

+ template <class F> constexpr T value_or_else(F&& f) const&;

+ template <class F> constexpr T value_or_else(F&& f) &&;

// [optional.mod], modifiers

• Apply the above remove cv t<T> default argument also to the declarations of value or()

just above [optional.observe]/17 and [optional.observe]/19.

• At the end of [optional.observe], add:

template<class... Args> constexpr T value or construct(Args&&... args) const&

Mandates: is copy constructible v<T> && is constructible v<T, Args...> is true.
Effects: Equivalent to:

return bool(*this) ? **this : T(std::forward<Args>(args)...);

template<class... Args> constexpr T value or construct(Args&&... args) &&

Mandates: is move constructible v<T> && is constructible v<T, Args...> is true.
Effects: Equivalent to:

return bool(*this) ? std::move(**this) : T(std::forward<Args>(args)...);

template<class U, class... Args>

constexpr T value or construct(initializer list<U> il, Args&&... args) const&

Mandates: is copy constructible v<T> &&

is constructible v<T, initializer list<U>&, Args...> is true.
Effects: Equivalent to:

return bool(*this) ? **this : T(il, std::forward<Args>(args)...);

template<class U, class... Args>

constexpr T value or construct(initializer list<U> il, Args&&... args) &&

Mandates: is move constructible v<T> &&

is constructible v<T, initializer list<U>&, Args...> is true.
Effects: Equivalent to:

return bool(*this) ? std::move(**this) : T(il, std::forward<Args>(args)...);

5

https://wg21.link/optional.observe#17
https://wg21.link/optional.observe#19
https://wg21.link/optional.observe

template<class F> constexpr T value or else(F&& f) const&

Let U be invoke result t<F>.
Mandates: is copy constructible v<T> && is convertible v<U, T> is true.
Effects: Equivalent to:

return bool(*this) ? **this : std::forward<F>(f)();

template<class F> constexpr T value or else(F&& f) &&

Let U be invoke result t<F>.
Mandates: is move constructible v<T> && is convertible v<U, T> is true.
Effects: Equivalent to:

return bool(*this) ? std::move(**this) : std::forward<F>(f)();

4 Design Decisions

If all we wanted was to make it easier to return a default-constructed T, we could just add a new
function value or default initialized(). This is not proposed, because it does not address the
consistency concern with exchange().

As mentioned in Section 1.3, just making value or() variadic leaves a lot to be desired: while
opt.value or(0xff, 0xff, 0xff) works reasonably well for a optional<color>, it doesn’t really
work for default construction, which is the driver behind this proposal. So this author does not
propose to make value or() variadic, but suggests to choose a different name for this functionality.

This author chose to make value or else() take just a single invokable, not a bind- or thread-
style N -ary argument list. The reason was twofold: First, the single-argument version is consistent
with the P0798-proposed or else(). Second, this author considers the thread constructor and
bind functions to be old-fashioned APIs that predate the introduction of lambdas, requiring use of
reference wrapper, which makes such APIs hard to use.

4.1 Naming

The value or() function is pre-existing, so the name is fixed.

For the emplacement-style function, the following names were considered by this author:

• value or() works well for N -ary arguments, N > 0, but not ery well for N = 0, which is
the major motivation for this proposal in the first place.

• value or make() emplacement-style factory functions have traditionally been called make xxx,
but those are free functions, not class member functions. Members, indeed, tend to be called
construct() (example: Allocator).

• value or constructed() (using the past participle form of construct instead) arguably more
correct form, gammatically, but unknown in the case of the standard API, so not proposed.

6

https://wg21.link/P0798

For the lazy version, no other names but value or else() come to mind, so no alternatives were
considered.

5 Acknowledgements

The author would like to thank all participants of the LEWG(I) reflector discussion that led to
this proposal, esp. Andrzej Krzemienski for confirming that value or()’s non-defaulted template
parameter was not a conscious omission. Barry Revzin suggested value or else() and mentioned
the alternative name value or construct() and this author never looked back.

6 References

[N4861] Richard Smith (editor)
Working Draft: Standard for Programming Language C++
http://wg21.link/N4861

7

http://wg21.link/N4861

	Motivation and Scope
	How the C++ Developer Became a Gardener
	Defaulting value_or()'s template argument
	Adding emplace-like value_or_construct()
	Adding lazy value_or_else()

	Impact on the Standard
	Proposed Wording
	Design Decisions
	Naming

	Acknowledgements
	References

