
Document #: P2187R4
Date: 2020-08-15
Project: ISO SC22/WG21 Programming Language C++
Title: std::swap_if, std::predictable
Reply-to: Nathan Myers <ncm@cantrip.org>
Target: C++23
Audience: SG18 LEWGI

std::swap_if, std::predictable

This paper proposes new Standard Library primitives swap_if and
iter_swap_if, currently used implicitly (but very sub-optimally) in nearly half
of the Standard Library algorithms, and equally useful for users’ algorithms,
and equally useful for users’ algorithms. Although trivial to code correctly,
current shipping compilers generate markedly sub-optimal code for naïve
implementations.

In addition, it proposes a means to indicate to Standard Library facilities that
the results of an ordering predicate in a particular use have turned out to
be predictable, so that a more appropriate variant of the algorithm may be
substituted. Finally, it defines a customization point to identify types with
non-trivial special members that nonetheless qualify for optimization.

History
P2187R4 Fix some noexcept specifications, use ADL swap(x,y).

P2187R3 Replace cheaply_copyable concept with cheaply_swappable, and
provide customization point is_trivially_swappable_v, to extend appli-
cability to “pimpl” and uniq_ptr types. Add noexcept. Mention P1144.

P2187R2 Fix numerous code errors, archaisms; replace bool is_cheaply_copyable
with concept cheaply_copyable.

P2187R1 Add iter_swap_if; restrict non-branching optimization to small
T; use predictable_bool wrapper; remove is_predictable, add
is_cheaply_copyable; add Example, Acknowledgements, Open Issues;
evolve WP text.

P2187R0 In delayed version of 2020-06-15 mailing.

Introduction
Almost half of the algorithms in std, exemplified by std::sort, depend on
a conditional-swap operation, used in circumstances where the condition is
typically not especially predictable. For example, the conditional-swap operation
might appear in the body of a partition loop as:

1

if (*right < pivot) {
std::swap(*left, *right);
++left;

}

Testing reveals that the performance of such algorithms can be improved by more
than a factor of two[1][2] simply by changing the implementation of conditional-
swap to avoid the pipeline stalls that follow branch mispredictions. (It may be
surprising, even hard to believe, that the naïve conditional-swap above often
results in very poor algorithm performance. Please consult the references in case
of doubt.[3])

This paper proposes new library algorithms swap_if and iter_swap_if. A
portable implementation of swap_if for int, coded to avoid the worst hardware
inefficiencies, might look like:

bool swap_if(bool c, int& a, int& b) {
T tmp[2] = { a, b };
b = tmp[1-c], a = tmp[c];
return c;

}

Because it performs identically the same sequence of instructions for both possible
values of its bool argument, varying only the array indices, it avoids a likely
mis-predicted branch and pipeline stall. In the the partition loop mentioned
above, it might be called as:

left += swap_if(*right < pivot, *left, *right);

Discussion

Testing demonstrates that the best implementation of swap_if for scalar values
on common modern hardware uses cmov instructions. However, no mainstream
compiler emits cmov instructions to implement the generic swap_if coded above.
One compiler was found to peephole-optimize this version to use cmov:

bool swap_if(bool c, int& a, int& b) {
int ta = a, m = -c;
a = m&b|~m&a, b = m&ta|~m&b;
return c;

}

Other compilers checked produce markedly sub-optimal code for both alterna-
tives.

Despite such sub-optimal code generation, however, a sort implemented using
either swap_if above, and built with current shipping compilers, nonetheless
strongly outperforms the std::sort provided in current Standard Library im-
plementations, when applied to random scalar input.

2

The suggested implementation is an improvement over the naïve version when
copying a T is cheap. More precisely, it is better when two load/store pairs
and a pipeline stall take longer than four unconditional load/stores, or (moreso)
four loads and two taken cmov stores. Therefore, this proposal specifies a non-
branching variant to be used only when T really is trivially copyable, and small
enough. Excess observable copies or moves are likely to be too expensive, and
anyway wrong. Therefore, we gate access to the non-branching swap_if with a
restrictive concept:

template <typename T>
constexpr bool is_trivially_swappable_v =

std::is_trivially_copyable_v<T>;

template <typename T>
concept cheaply_swappable =

(std::is_trivially_swappable_v<T> && sizeof(T) <= N);

template <typename T>
requires (cheaply_swappable<T> || std::swappable<T>)

constexpr bool swap_if(bool c, T& x, T& y)
noexcept(cheaply_swappable<T> || std::is_nothrow_swappable_v<T>)

{
if constexpr (cheaply_swappable<T>) {

log('u');
struct alignas(T) { char b[sizeof(T)]; } tmp[2];
std::memcpy(tmp[0].b, &x, sizeof(x));
std::memcpy(tmp[1].b, &y, sizeof(y));
std::memcpy(&y, tmp[1-c].b, sizeof(x));
std::memcpy(&x, tmp[c].b, sizeof(x));
return c;

}
if (c) swap(x, y);
return c;

}

Implementations will determine the size limit N where the cost of excess copies
performed in a constant-time conditional swap operation exceeds the savings
from avoiding pipeline stalls. We expose is_trivially_swappable_v and
cheaply_swappable for the benefit of user algorithms, where they are equally
as useful as in the Standard Library. The is_trivially_swappable_v detour
seen above will turn out to be useful. (Note that P1144 appears to be identical
in purpose to is_trivially_swappable_v. It will be retained in this proposal
until P1144 enters the WP. cheaply_swappable will remain. Note that any
cheaply_relocatable would have a different N.)

It should be straightforward to peephole-optimize the swap_if above so that
cmov instructions are used where possible. Once std::swap_if is provided in the

3

Standard Library, and used, implementers might find motivation to implement
it optimally, yielding further performance gains; and might begin to use it in
their Standard Library algorithms, improving them as well.

With such performance gains to be had, why are implementers not already doing
this, internally, in their Standard Library code? First, the opportunity has been
poorly understood until recently. More subtly, some programs, when choices
turn out to have been predictable, are slower: users rarely thank implementers
for faster programs, but complain bitterly about each slower one, labeling it a
regression. Implementers have been burned after generating cmov instructions
in what turned out to be predictable contexts[4]. Changing the performance
characteristics of fundamental algorithms without prompting from the Standard
seems too risky for most implementers to do on their own initiative, whatever
the benefits for users.

Users who discover a speed regression need an answer. Which leads to. . .

predictable<Predicate>

Order-dependent algorithms are sometimes used in circumstances where the com-
parison results turn out to be highly predictable. (The threshold of predictability
for which an otherwise sub-optimal branching swap_if implementation is pre-
ferred is north of 90% on current hardware.) Some users will then find that a
library algorithm, typically much faster when implemented with a branchless
swap_if, turns out to be slower for their particular data. They need a practical,
portable way to roll back to a branching variant without changing their type T.

To that end, we additionally propose a predicate wrapper, std::predictable:

template <typename Predicate>
struct predictable {

Predicate pred; // for exposition only
predictable(Predicate&& p) : pred(std::move(p)) {}
template <typename ...Args>

requires predicate<Predicate, Args&&...>
auto operator()(Args&&... args) -> predictable_bool

{ return bool(invoke(pred, (Args&&)args...)); }
// +overloads

};

Its op() just forwards its arguments to the predicate, but converts the result to
std::predictable_bool, itself just a wrapper for bool:

struct predictable_bool {
bool value{};
predictable() = default;
predictable_bool(bool v) : value(v) {}
operator bool() { return value; }

};

4

For any predicate P such that std::predicate<P, Args...> is satified, so does
also std::predicate<std::predictable<P>>.

Finally, we need an overload of swap_if for predictable_bool:

template <std::swappable T>
bool swap_if(predictable_bool c, T& x, T& y) {

if (c) swap(x, y);
return c;

}

Standard library components that take a predicate argument may be passed
a predicate wrapped in std::predictable as a way to request that the im-
plementation use a conditional-branching swap_if in preference to the default,
branchless version normally used for small, simple objects; and make any other
appropriate accommodation. It might be used like:

auto v = std::vector{ 3, 5, 2, 7, 9 };
std::sort(v.begin(), v.end()); // unpredicted
std::sort(v.begin(), v.end(), // predicted

std::predictable([](int a, int b) { return a > b; }));

Note that the wrapper does not, itself, affect the predicate implementation, or
even (usually) how it is applied. It is purely a medium to conduct the caller’s
expectation of predictability deep into the algorithm’s implementation, and there
help to choose what it may presume has been carefully measured to be the best
implementation for the input data coming. This doubles the number of such
algorithm implementation variants available without need to invent and expose
numerous new names for them. Furthermore, it parameterizes the choice so it is
easier to use in generic code than differently-named algorithms would be.

The formal semantics of all library components are unaffected by predictable-
wrapping, so their descriptions in the Standard are unchanged. Better-quality
implementations will provide variants of each affected algorithm, visible only by
improved performance when used correctly.

“Pimpl” types
Many object types have non-trivial default-construction, assignment, and copy-
construction semantics, yet can safely be bitwise-swapped. The canonical example
is a “pimpl” type, which may wrap a simple pointer. None of the regular
operations on such a type are trivial, yet bitwise-swapping the wrapped pointer
is always safe (modulo tearing).

swap_if would be substantially more valuable if it could be used on these types,
too. To that end, the trait defined above, is_trivially_swappable_v, may be
declared a customization point. We can customize certain existing Standard
Library types as trivially swappable, too, notably unique_ptr:

5

template <typename T, typename D>
constexpr bool is_trivially_swappable_v<std::unique_ptr<T,D>> = true;

Now unique_ptr can be operated on as fast as ordinary scalars. Users can
specialize this for their own types, as well. Of course it would be UB to specialize
it for certain types, but remarkably many qualify. (This becomes unnecessary if
P1144 gets in. In that case, cheaply_swappable would be defined in terms of
is_trivially_relocatable_v instead.)

Example
Here is how these facilities might be used in an implementation of a representative
algorithm[5].

iter_swap_if is trivial, expressed minimally:

template <typename Flag, typename I>
bool iter_swap_if(Flag c, I p, I q) { return swap_if(c, *p, *q); }

Here is a minimal partition that uses iter_swap_if. Notice that this is the
lowest level that uses the argument predicate. The predictability expectation is
carried down into iter_swap_if, then swap_if, via the type of the predicate’s
result:

template <permutable I, typename Predicate>
requires sortable<I, Predicate>

constexpr auto partition(I b, I e, Predicate&& pred) {
--e;
auto pivot = std::move(*e);
I left = b;
for (I right = b; right < e - 1; ++right) {

auto do_swap = std::invoke((Predicate&&)pred, *right, pivot);
left += std::iter_swap_if(do_swap, left, right);

}
*e = std::move(*left);
*left = std::move(pivot);
return left;

}

Finally, at top level, a minimal sort that uses the partition:

template <permutable I, predicate Predicate>
requires sortable<I, Predicate>

constexpr void sort(I begin, I end, Predicate&& pred) {
while (end - begin > 1) {

I mid = partition(begin, end, (Predicate&&)pred);
std::sort(begin, mid, (Predicate&&)pred);
begin = mid + 1;

6

}
}

Note particularly that that at intermediate levels, hardly any accommodation is
needed, in the code, to select the correct version of swap_if at the bottom-most
level; seen here is only that, in partition, the temporary do_swap is declared
auto instead of bool to propagate a predictable_bool should it ever appear.
Wrappers do the work.

Other primitives
This proposal offers WP text for swap_if and iter_swap_if. Other primitives
used in common algorithms would certainly benefit from similar treatment,
most notably select, used when descending binary trees and in binary search.
Worked examples of this and others are solicited. (E.g.: minmax, push_heap,
pop_heap.)

Proposed WP Text
In 25.8 Sorting and related operations [alg.sorting], add a new subsection:

25.8.x Predictability . [predictability]

namespace std {
template <typename T>

constexpr bool is_trivially_swappable_v; // customization point

template <typename T>
concept cheaply_swappable;

struct predictable_bool;

template <typename Predicate>
struct predictable;

template <typename T>
constexpr bool swap_if(bool c, T& x, T& y);

template <swappable T>
constexpr bool swap_if(predictable_bool c, T& x, T& y);

template <typename I>
constexpr bool iter_swap_if(bool c, I p, I q);

template <indirectly_swappable I>
constexpr bool iter_swap_if(predictable_bool c, I p, I q);

}

1. The utilities defined here aid in modulating how algorithms rely on, or

7

ignore, the predictability of the results of calls to their predicate arguments,
where prediction derives from the recent runtime history of such results.

2. It is intended that, when the element type operated on is trivially-
copyable and small, the runtime performance of algorithms swap_if
and iter_swap_if variants that take a bool argument should not
depend strongly on the value of c; and that of the variants that take a
predictable_bool or are called on larger elements may depend on the
runtime value and predictability of c.

25.8.x.1 Constant is_trivially_swappable_v [is.trivially.swappable]

template <typename T>
constexpr bool is_trivially_swappable_v =

is_trivially_copyable_v<T>;

template <typename T, typename D>
constexpr bool is_trivially_swappable_v<unique_ptr<T,D>> = true;

1. is_trivially_swappable_v is a customization point for use to declare
that a type representation is safe to swap bitwise without using member
functions. By default, it matches is_trivially_copyable_v, but may be
customized to encompass a wider range of types.

2. is_trivially_swappable_v is customized for the case of unique_ptr.

25.8.x.2 Concept cheaply_swappable [cheaply.swappable]

template <typename T>
concept cheaply_swappable =

(std::is_trivially_swappable_v<T> && sizeof(T) <= N);

1. This concept is intended to aid algorithm selection favoring constant-time
operations, for improved runtime performance, when operating on small,
simple element object types T.

2. The value of N small enough for T to participate usefully in unpredicted
operations is platform dependent, and is therefore unspecified in this
Standard. [Note: Implementations should choose a value N such as to
maximize performance of Standard Library algorithms called with predicates
P not wrapped as predictable<P>. For some build targets the correct value
will be zero. – end Note]

25.8.x.3 Struct predictable_bool [predictable.bool]

struct predictable_bool {
bool value{};
constexpr predictable_bool() = default;
constexpr predictable_bool(bool v) : value(v) {}

8

constexpr operator bool() { return value; }
};

1. This is a wrapper for a bool value, to indicate to an algorithm it is passed
to that its value derives from a process expected to be usefully predictable,
for purposes of optimization.

25.8.x.4 Function object template predictable [predictable]

template <move_constructible Predicate>
struct predictable {

using type = Predicate;
Predicate pred{}; // name for exposition only
constexpr predictable() = default;
constexpr predictable(Predicate&& p) : pred(std::move(p)) {}
constexpr predictable_bool operator()(auto&&... args) const;
constexpr predictable_bool operator()(auto&&... args);
constexpr predictable_bool operator()(auto&&... args) const&&;
constexpr predictable_bool operator()(auto&&... args) &&;

};

1. Remarks: predictable wraps argument predicate p, changing only its
result type, to predictable_bool, as a means to indicate to functions
passed the result that it should be treated as a predictable influence on
program flow, for the purpose of selecting algorithm implementations most
suitable for expected runtime conditions.

2. [Note: predictable is provided for use in circumstances where it has been
determined that the default behavior of algorithms, as applied to expected
runtime patterns in input data, is sub-optimal. – end note]

3. [Example:

auto v = std::vector{ 3, 5, 2, 7, 9 };
std::sort(v.begin(), v.end()); // unpredicted
std::sort(v.begin(), v.end(), // predicted

std::predictable([](int a, int b) { return a > b; }));

—end example]

25.8.x.4.1 Constructor predictable [predictable.ctor]

constexpr predictable(Predicate&& p) : pred(std::move(p)) {}

1. Effect: Move-constructs argument p into member pred.

25.8.x.4.2 predictable<T>::operator() [predictable.invoke]

template <typename ...Args>
requires predicate<Predicate const&, Args&&...>

9

constexpr auto operator()(Args&&... args) const
noexcept(is_nothrow_invocable_v<Predicate const&, Args&&...>)

-> predictable_bool
{ return bool(std::invoke(pred, (Args&&)(args)...)); }

template <typename ...Args>
requires predicate<Predicate&, Args&&...>

constexpr auto operator()(Args&&... args)
noexcept(is_nothrow_invocable_v<Predicate&, Args&&...>)

-> predictable_bool
{ return bool(std::invoke(pred, (Args&&)(args)...)); }

template <typename ...Args>
requires predicate<Predicate const&, Args&&...>

constexpr auto operator()(Args&&... args) const &&
noexcept(is_nothrow_invocable_v<Predicate const&&, Args&&...>)

-> predictable_bool
{ return bool(std::invoke(pred, (Args&&)(args)...)); }

template <typename ...Args>
requires predicate<Predicate&, Args&&...>

constexpr auto operator()(Args&&... args) &&
noexcept(is_nothrow_invocable_v<Predicate&, Args&&...>)

-> predictable_bool
{ return bool(std::invoke(pred, (Args&&)(args)...)); }

1. Effect: Invokes member pred, passing arguments by perfect forwarding.

2. Returns: The result of invocation, as converted to bool, thence to
predictable_bool.

25.8.x.5 swap_if [swap.if]

template <typename T>
requires (cheaply_swappable<T> || std::swappable<T>)

constexpr bool swap_if(bool c, T& x, T& y)
noexcept(cheaply_swappable<T> || is_nothrow_swappable_v<T>)

1. Effects: If cheaply_swappable<T>, then x and y representations
are swapped as if by memcpy if and only if c is true. Otherwise,
swap_if(predictable(c), x, y).

2. Returns: c.
3. Remarks: If cheaply_swappable<T>, should execute in time minimally

dependent on c.

template <swappable T>
constexpr bool swap_if(predictable_bool c, T& x, T& y)

noexcept(is_nothrow_swappable_v<T>)

10

1. Effects: if (bool(c)) swap(x, y).
2. Returns: c.

25.8.x.6 iter_swap_if [iter.swap.if]

template <typename I>
requires (cheaply_swappable<iter_value_t<I>> ||

indirectly_swappable<I>)
constexpr bool iter_swap_if(bool c, I p, I q) noexcept;

1. Effects: If cheaply_swappable<iter_value_t<I>>, then ::std::swap_if(c,
*p, *q); otherwise, if (c) ::std::iter_swap(p, q).

2. Returns: c.

template <typename I>
requires indirectly_swappable<I>

constexpr bool iter_swap_if(predictable_bool c, I p, I q)
noexcept(is_nothrow_swappable_v<iter_value_t<I>>);

1. Effects: if (bool(c)) ::std::iter_swap(p, q).
2. Returns: c.

Acknowledgements
Thanks to Adam Martin for the array-indexed implementation suggestion, to
Bryan St. Amour for suggesting iter_swap_if, to Arthur O’Dwyer for design
improvements and education, Gašper Ažman for overloading and noexcept advice,
and to Peter Dimov, Mark Glisse, Howard Hinnant, Corentin Jabot, Tomasz
Kamiński, and Jon Wakely for helpful discussion and advice.

References
[1]: https://arxiv.org/abs/1604.06697

[2]: http://gitlab.com/ncmncm/sortfast/

[3]: http://cantrip.org/sortfast.html

[4]: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=56309

[5]: http://gitlab.com/ncmncm/wg21-p2187-swap_if

11

https://arxiv.org/abs/1604.06697
http://gitlab.com/ncmncm/sortfast/
http://cantrip.org/sortfast.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=56309
http://gitlab.com/ncmncm/wg21-p2187-swap_if

	std::swap_if, std::predictable
	History
	Introduction
	Discussion

	predictable<Predicate>
	``Pimpl'' types
	Example
	Other primitives
	Proposed WP Text
	25.8.x Predictability . [predictability]
	25.8.x.1 Constant is_trivially_swappable_v [is.trivially.swappable]
	25.8.x.2 Concept cheaply_swappable [cheaply.swappable]
	25.8.x.3 Struct predictable_bool [predictable.bool]
	25.8.x.4 Function object template predictable [predictable]
	25.8.x.4.1 Constructor predictable [predictable.ctor]
	25.8.x.4.2 predictable<T>::operator() [predictable.invoke]
	25.8.x.5 swap_if [swap.if]
	25.8.x.6 iter_swap_if [iter.swap.if]

	Acknowledgements
	References

