Misc lexing and string handling improvements
Document #: P2178R0

Date: 2020-06-15

Project: Programming Language C++

Audience: EWG, SG-16

Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

This Omnibus paper proposes a series of small improvements to the lexing of C++ and the
forming of string handling, notably to clarify the behavior of Unicode encoded sources files,
and to reduce implementation divergence. This paper intends to supersede N3463 [1] and
P1854R0 [3] and proposes a resolution to several core issues.

While some of these changes are unrelated, the intend of this paper’s authors and SG-16 is to
rewrite the description of lexing using more accurate terminology, a wording will, therefore,
be provided incorporating all the desired design changes.

Updating both the design an the terminology lets us acknowledge and handle the subtilities
of text which may not have been fully understood in a pre-Unicode world. The overarching
goals are to reduce the divergence in implementations, the complexity of the mental model,
and most importantly to make sure that the semantic of text elements is conserved through
the different phases of compilation.

Proposals

All the proposed changes relate to phases 1-6 of translations. In particular, this proposal has
no library impact.

Proposal 1: Mandating support for UTF-8 encoded source files in phase 1

The set of source file character sets is implementation-defined, which makes writing portable
C++ code impossible. We proposed to mandate that C++ compilers must accept UTF-8 as
an input format. Both to increase portability and to ensure that Unicode related features
(ex P1949R3 [2] can be used widely. This would also allow us to better specify how Unicode
encoded files are handled.

How the source file encoding is detected, and which other input formats are accepted would
remain implementation-defined.

mailto:corentin.jabot@gmail.com
https://wg21.link/N3463
https://wg21.link/P1854R0
https://wg21.link/P1949R3

Most C++ compilers (GCC, EDG, MSVC, Clang) support utf8 as one of their input format - Clang
only supports utf8.

Unlike N3463 [1], we do not intend to mandate or say anything about BOMs, following Unicode
recommendations. BOMs should be ignored (but using BOMs as a means to detect UTF-8
files is a valid implementation strategy, which is notably used by MSVC).

We do not propose to make UTF-8 source file a mandated default, nor the only supported
format. Just that there must be some implementation-defined mechanism (such as a compiler
flag) that would tell the compiler to read the file as utf-8.

Proposal 2: What is a whitespace or a new-line?

We propose to specify that the following code point sequences are line-terminators (after
phase 1):

LF: Line Feed, U+000A

VT: Vertical Tab, U+000B
FF: Form Feed, U+000C

CR: Carriage Return, U+000D

CR+LF: CR (U+@@@D) followed by LF (U+Q@0A)
NEL: Next Line, U+Q@85

LS: Line Separator, U+2028

PS: Paragraph Separator, U+2029

Line terminators and the following characters constitute whitespaces

U+0009 HORIZONTAL TAB
U+0020 SPACE

U+200E LEFT-TO-RIGHT MARK
U+200F RIGHT-TO-LEFT MARK

These correspond to characters with the Pattern_Whitespace Unicode property. The line
terminator subset is derived from UAX14 - UNICODE LINE BREAKING ALGORITHM.

We intend to fix CWG1655 [7] following this clarification.

Proposal 3: Preserve Normalization forms

We propose to specify that Unicode encodes files are not normalized in phase 1 or phase 5,
as to preserve the integrity of string literals when both the source and the literal associated
character set are the Unicode character set. Instead, the exact sequence of code points of
these literals is preserved. In effect, this does not change the existing behavior of tested
implementations in phase 1 (and phase 5 is already specified on a per code point basis).

https://wg21.link/N3463
https://wg21.link/CWG1655

Proposal 4: Making trailing whitespaces non-significant

There is a divergence of implementation in how compilers handle spaces between a backslash
and the end of a line.

int main() {
int i =1
/7 \
+ 42
return i;

}

EDG(tested with icc front-end) GCC and Clang will trimm the whitespaces after the backslash
- and return 1 - MSVC will not and return 43. Both strategies are valid as part of phase 1
"implementation-defined mapping”.

To avoid this surprising implementation divergence we proposed that an implementation
must trim all trailing whitespaces before handling \ slicing. This is reinforced by the fact that
IDES and tools may discard such whitespaces. The Google-style guidelines forbid trailing
whitespaces.

An additional or alternative approach is to deprecate \ that are not part of a preprocessor
directive. We are not proposing this at this time.

Unlike other proposals in this paper, this maybe is a silent breaking change for code
that is only compiled with MSVC. A quick analysis of the VCPKG package didn't find any
trailing whitespaces after backslashes

We have not been able to measure the impact of this proposed change in the MSVC ecosystem.
Other compilers, and all code supported by these compilers would be unaffected.

Proposal 5: Restricting multi-characters literals to members of the Basic Latin
Block

int i = 'é'; can be equivalent to either int i = '\u@0e9’; or int i = 'e\u@301’; depending
on source encoding and normalization. There is also a lot of divergence of implementations
in how literals are interpreted.

Clang GCC UTF-8 MSVC UTF-8 GCC Latin1 MSVC latin 1
'e\u0301’; ill-formed | int(@x65CC81) + Warning | int(0x65cc81) ill-formed int (@x653f)
"\ueee9’; ill-formed | int(@xC3A9) + Warning int(0xC3A9) | OxFFFFFFFFFFFFFFE9 int (0x09)

Note the presence of two code points in the first line.

We propose to limit multi-character literals to a sequence of code points from the Unicode
Basic Latin Block (~ASCII) to limit the current confusion.

(We do not propose to deprecate multi-character literals).

With the proposed change:

'c' // OK

"abc' // OK, multi-characters literal

"\u@e8e’ // OK (if representable in the execution encoding)

"\u0080\u0e80' // ill-formed

'é' // OK (if representable in the execution encoding) if one code point (nfc, U+0Q0e9), otherwise
(e\u@301) ill-formed

Proposal 6: Making wide characters literals containing multiple or unrepresentable
c-char ill-formed

The following constructs are well-formed but have widely different interpretations depending
on implementations

wchar_t a=L"%";

wchar_t b = L'ab’;

wchar_t ¢ = L'é’;

* the size of wchar_t being implementation defined, L' ¥ ' is correctly interpreted on
Unix platforms where that size is 32 bits, but truncated by MSVC and other compatible
windows compilers where wchar_t is 16 bits. MSVC first converts to UTF-16, and truncate
to the first code unit which results in an invalid lone high surrogate oxd83d.

* L'ab’ isequivalenttoL'a’ onmsvcandL'b’ on GCC and Clang. All implementation emit
a warning under different warning levels

* L'é' can be either 1 or 2 c-char depending on the source normalization: L'\ueee9’
behaves expectedly on all platforms, while L'e\u@301’ will be e in MSVC and U+0301 in
GCC AND clang.

As such, we propose to make wide characters literals with multiple-chars or char which are
not representable in the execution character set ill-formed.

Note that wide characters literals with multiple c-char, unlike multi-character-literals are
represented by a single wchar_t. The other difference is that Unicode combining characters
may be representable by a wchar_t whereas they cannot be represented by a char. (Note: the
first Unicode combining characters appear in the Combining Diacritical Marks block, starting
at U+0300).

Proposal 7: Making conversion of character and string literals to execution and
wide execution encoding ill-formed for unrepresentable c-char

Implementations diverge on how they handle unrepresentable code points when conversion
to execution encodings. GCC and Clang make the conversion ill-formed while MSVC usually
replaces unrepresentable characters by a single question mark ?. Strings are text which carries
intent and meaning; An implementation should not be able to alter that meaning.

We proposed to make such conversion ill-formed rather than implementation-defined.

After discussions, in SG-16, we do not propose to allow implementations to consider multi-code
points graphemes clusters when doing that conversion. For example considering "e\u@301",

4

U+301 does not have a representation in latin 1, but the abstract character é does (U+00e9
maps to 0x00E9 in ISO/IEC 8859-1).

However, it does not seems possible to guarantee that an implementation knows about all
such mapping, which would lead to further implementation divergence and unnecessary
burden on compilers. We, therefore, propose to be explicit about the conversion being done
on each code point independently as is currently the case.

Proposal 8: Enforcing the formation of universal escape sequences in phase 2
and 4

EDG(icc), GCC, MSVC and Clang form universal character names from the following codes:

"\\

uooe9’;

//---

#tdefine CONCAT(x,y) xiHty
CONCAT(\, U0@O1F431);

However, these behaviors are currently UB within the standard. As such, we propose to make
both these behaviors well-defined to follow existing practices.

Proposal 9: Reaffirming Unicode as the character set of the internal represen-
tation

The standard already specifies that characters outside of the basic source character set are
converted to UCNs whose values are isomorphic to Unicode. We want to make it clear that
characters that do not have representation in Unicode are ill-formed. This includes some
characters in some Big5 encodings and exotic languages such as Klingon.

In particular, all characters in EBCDIC ', GB 18030 have a unique mapping in Unicode. The in-
tent is to avoid the use of unassigned code points or the Private Use Area by the implementers,
as well as to preserve semantic meaning in phase 1. The preservation of semantic meaning
would also make invalid utf-8 sequences ill-formed in phase 1, and other decoding errors
(as there exist no mapping for such invalid sequence). (Note that octal/hexadecimal escape
sequences can be used in string literal to form arbitrary binary data)

Notably, it is important to consider that the current specification limits the implementation-
defined mapping to universal character names to valid (0-10FFF) code points, and any such
valid code point can appear in the source before phase 1. It is therefore not possible for an
implementation to uniquely map unrepresentable characters to a valid code point.

This proposal has no bearing on the actual internal representation strategy of already con-
forming implementations. Notably, mandating internal as-if Unicode representation doesn't
preclude bytewise preservation of narrow and wide string literals when the execution encoding
is identical to the source encoding, as long as there exists a Unicode representation, as this is

"For EBCDIC, the mapping of control characters is specified in Unicode Technical Report 16 - UTF-EBCDIC. This
mapping is not semantic-preserving, to the extent control characters have semantics.

http://www.unicode.org/reports/tr16/tr16-8.html

otherwise non-observable: It is an important implementation strategy for encoding which are
not roundtrip-able through Unicode such as Shift JIS to preserve the byte content of string lit-
erals when both source and execution encodings are identical. Such preservation is otherwise
non-observable and doesn't need to be mandated, but it needs not to be precluded. We only
seek to mandate representability in Unicode. Such representability is notably necessary
for the concatenation of literals with different encoding which may happen in phase 6 ("foo"
u"bar” // u"foobar"). Again, this constraint exists in practice as many implementations use
Unicode internally and do not use the "implementation-defined mapping” leeway to nefarious
ends.

Specifically:

+ EBCDIC encodings would be converted to Unicode according to UTF-EBCDIC / IBM CDRA
- as such, EBCDIC specific control characters are mapped to C1 control characters. C1
controls characters have no meaning on their own and are designed to be interpreted
in an application-specific manner.

* GB 18030 maps to Unicode, but a handful of code points maps to the Private Use Area

+ Big 5: Most abstract characters map to Unicode, with the rare exception of some spelling
of some people or place names. Notably, Unicode prescribes a mapping for Windows
implementation (code page 951/950)

+ All other encodings have a complete, semantic preserving mapping to assigned Unicode
code points.

That list does not intend to be prescriptive, but to show that the C++ standard doesn’t need
and shouldn't try to handle characters not representable of Unicode. Furthermore, the author
hopes that the wording can convert universal-character-names to Unicode code points as soon
as they are encountered or formed (which is exclusively a matter of wording, that would
neither affect behavior nor prescribe an internal representation).

Following this clarification we hope to fix CWG1332 [6]

Proposal 10: Make L in _Pragma ill-formed
_Pragma(L"") is equivalent to _Pragma("").

We propose to remove the _Pragma(L"") syntax as both strings are interpreted as sequences
of Unicode code points and never as a wide execution literal. C++ handling of text is confusing
enough not to add meaningless characters. This would resolve CWG897 [5]. Note that there
is a divergence of implementation between C++ and C where C discard all prefixes and C++
only discards L.

Out of the 90 millions lines of code of the 1300+ open source projects available on vcpkg, a
single use of that feature was found within clang’s lexer test suite, for a total of 2000 uses
of _Pragma. Similarly, the only uses of _Pragma (u8”"), _Pragma (u”"), _Pragma (U""), etc were
found in Clang’s test suite.

https://wg21.link/CWG1332
https://wg21.link/CWG897

Proposal 11: Make character literals in preprocessor conditional behave like
they do in C++ expression

#if 'A’ == '\x65'’

#endif

if (A" == 0x65){}

Both conditions are not guaranteed to yield a similar result, as the value of character literals
in preprocessor conditional is not required to be identical to that of character literals in
expressions.

However, a survey of the 1300+ open sources projects available on vcpkg shows that the
primary use case for these macros is exactly to detect the execution encoding at compile
time and all compilers available on compiler explorer treat these literals as if they were in the
execution encoding.

Notably, a few libraries use that pattern to detect EBCDIC or ASCII execution encoding. Of the
50 usages of the pattern, all but one where in C libraries.

While we think there should be a better way to detect encodings in C++ [4], there is no reason
to deprecate that feature.

Instead, we recommend adopting the standard practice and user expectation of converting
these literals to the execution encoding before evaluating them.

This also removes yet another theoretical encoding, which further simplifies the mental model.

http://eel.is/c++draft/cpp#cond-12
http://eel.is/c++draft/cpp#cond-12
http://eel.is/c++draft/cpp#cond-12

Proposal 12: Phase 6 needs fixing

String literal concatenation happen after each literal has been converted to its associated
encoding in phase 5, and as such the standard is actively encouraging mojibake in the following
scenarios:

L nn nn
nn nu

u8

nn nn
u
U nn nn
nn nn

u

nn L nn
nn U nn

nn nn
u8

While string conversion is definitively useful, the current behavior is not.

Indeed, each fragment may be in a different encoding after concatenation: utf-8 data con-
catenated to shift-jis data, for example.

We propose 2 possible resolutions:

* The program is ill-formed unless each string-literal part of a concatenation has the same
prefix

* The encoding of the first string-literal determines the encoding of the string-literal result-
ing from the concatenation and the program is ill-formed if any but the first string-literal
literal has an encoding prefix:

wn o onn // OK, const charx

ug"" "" // OK, equivalent to u8""” u8"", const char8_tx
u"" """ // 0K, equivalent to u”" u""”, const charl6_t*
""" // OK, equivalent to U"" U"", const char32_tx
L"" " // OK, equivalent to L"" L"", const wchar_tx
SR // ill-formed

L™ u"" // ill-formed

In which case, each string-literal should be interpreted as having the same prefix in
phase 5, so they are converted to the same encoding prior to concatenation.

There is implementation divergence in the handling of concatenation:
MSVC converts each string to its associated execution encoding, as specified by phase 6, while
GCC and clang consider the following snippets equivalent (where X is any valid encoding-prefix)

nn nn
X

nn X nn
X nn X nn

https://godbolt.org/z/-5BTcT

Annex: Schematization of text encodings handling during compi-
lation

Current model

The graph below is a simplification of the different encodings that appear during compilation.
Each rectangle represents a possibly different encoding. The red arrows represent operations
that may alter the semantic of text elements.

Physical Source

Implementation defined mapping

Internal = Basic Source + UCNs

Preprocessor

Preprocessor Conditionals

Execution Wide Encoding UTF-8/16/32

Proposed model

In the proposed model, all conversions are either semantic preserving? or ill-formed. Prepro-
cessor Conditionals use the narrow literal encoding (execution literal encodings). Outside of
raw literals, universal-character-names are converted to codepoints as they are formed, the

wording is specified in term of the Unicode character set.

Abstract Characters Sequence UTF-8

semantic preserving /codepoints preserving

Unicode

Trim whitespaces + Slice

Preprocessor

lsemantic preserving \codepoints preserving

semantic preserving

Narrow Literal Encoding Wide Literal Encoding UTF-8/16/32

2The value of multi-character literals remains implementation-defined

10

Acknowledgments

Thanks to the people who provided feedback on the proposed changes, notably Tom Honner-
mann, Hubert Tong, Aaron Ballman, Steve Downey.

References

[1] Beman Dawes. N3463: Portable program source files. https://wg21.1link/n3463, 11 2012.

[2] Steve Downey, Zach Laine, Tom Honermann, Peter Bindels, and Jens Maurer. P1949R3: C++
identifier syntax using unicode standard annex 31. https://wg21.1ink/p1949r3, 4 2020.

[3] Corentin Jabot. P1854R0: Conversion to execution encoding should not lead to loss of
meaning. https://wg21.1ink/p1854re, 10 2019.

[4] Corentin Jabot. P1885R2: Naming text encodings to demystify them. https://wg21.1link/
p1885r2, 3 2020.

[5] Daniel Krugler. CWG897: _pragma and extended string-literals. https://wg21.1link/cwg897,
520009.

[6] Mike Miller. CWG1332: Handling of invalid universal-character-names. https://wg21.1link/
cwg1332, 6 2011.

[71 Mike Miller. CWG1655: Line endings in raw string literals. https://wg21.1ink/cwg1655, 4
2013.

[N4861] Richard Smith Working Draft, Standard for Programming Language C++
https://wg21.1ink/N4861

11

https://wg21.link/n3463
https://wg21.link/p1949r3
https://wg21.link/p1854r0
https://wg21.link/p1885r2
https://wg21.link/p1885r2
https://wg21.link/cwg897
https://wg21.link/cwg1332
https://wg21.link/cwg1332
https://wg21.link/cwg1655
https://wg21.link/N4861

	1 Abstract
	2 Proposals
	2.1 Proposal 1: Mandating support for UTF-8 encoded source files in phase 1
	2.2 Proposal 2: What is a whitespace or a new-line?
	2.3 Proposal 3: Preserve Normalization forms
	2.4 Proposal 4: Making trailing whitespaces non-significant
	2.5 Proposal 5: Restricting multi-characters literals to members of the Basic Latin Block
	2.6 Proposal 6: Making wide characters literals containing multiple or unrepresentable c-char ill-formed
	2.7 Proposal 7: Making conversion of character and string literals to execution and wide execution encoding ill-formed for unrepresentable c-char
	2.8 Proposal 8: Enforcing the formation of universal escape sequences in phase 2 and 4
	2.9 Proposal 9: Reaffirming Unicode as the character set of the internal representation
	2.10 Proposal 10: Make L in _Pragma ill-formed
	2.11 Proposal 11: Make character literals in preprocessor conditional behave like they do in C++ expression
	2.12 Proposal 12: Phase 6 needs fixing

	3 Annex: Schematization of text encodings handling during compilation
	4 Current model
	5 Proposed model
	6 Acknowledgments
	7 References

