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In section 8.5.1.5 2)

add: if the first expression of (dot) is a pointer [to an object], then E1.E2 is converted to (*(E1)).E2 .

more

IntroductionIntroduction

In C/C++, there are two operators .  and ->  used to access members of struct , class  and union  types, as available. These operators are specified such that
they are always paired with a single lvalue type; for example, if the left hand expression is a pointer to a struct , class , or union , then the operator ->  MUST be
used. There is no occasion where .  and ->  may be interchanged; although, C++ does allow overriding the ->  operator, and this existing behavior does not change.

Other languages (JS,Rust,Ruby,Python,Go,C#,Java,Kotlin,Swift,ObjC), indirectly derived from C have come to just use '.' as an operator; although, they also don't have a
static struct instance that's a constant, and the behavior of '.' is really to dereference the left hand expression always. A leading cause of confusion in first learning C
is why .  and ->  are different, when they both just get the value from a structure.
Another side effect of having different operators is migrating code from a place where you have an instance of a structure you're passing by reference to read
information into, and migrating to perhaps use a pointer to the buffer instead, and all the code has to be changed from '.' to '->' when it's really the same operation. It
should be noted, though, that with the introduction of smart pointers, which provide a -> operator to appear like pointers, would still have to use the -> symbol, because
the '.' operator would continue to work as normal on the base structure instance.

This is a simple example of current behavior.

struct s {

   int a;

};

void f( void ) {

    struct s S;

    struct s *P = &S;

    S.a  

    P->a

}

The internal operation of '.' and '-> are nearly identical; S.a  is just 'take the base address of the structure, add an offset to it'; or a shorthand (mem+offset) where
mem is variable depending on where the function's execution frame is located. On the other hand, P->a  is also (mem + offset), only the value comes from the lvalue,
instead of just being the address of the lvalue.

It could be that the actual operation of these operators depends on the type of the left hand operator.

struct t {

   struct s *pS;

};

struct v {

   struct t T;

};

struct v * pV;

void f2(void) {

    // there are no times where ->-> is immediately followed with but must always

    // be followed by an identifier, same with '.' except as a parameter '...'; which 

    // is an entirely diffferent operator.

   pV.T.Ps //...

   pV->T->Ps //...

}

One immediate argument was 'clarity' that you know more information if the operators remain the same. That you would know that the above T  was a pointer or a
struct (whether that information itself is of any use is deatable).

What about the other method of dereferencing? (* identifier)

https://gist.github.com/d3x0r/f496d0032476ed8b6f980f7ed31280da


void g( void ) {

    static struct s S;

    (*pV).T.pS = &S;

    pV->T.pS = &S;

}

In either case above the resulting type of the lvalue is either a struct  or union  or a pointer to a struct  or a pointer to a union , and the token after the
operator(s) is(are) an() identifier(s), which is a member of that struct or union.

The meaning of The meaning of ->->  and  and ..  ... ...

This is a more complex example. It involves a base class 'b' that has a data state, which is accessed through many levels of indirection in a single expression. (This is
not a style or design practice I would recommend, having the partials saved as the result of the check to see if it's valid... )

struct b { // base

    int a; // a value

};

struct f { // functional 1

    struct b b;

}

struct g { // functional 2

    struct b b;

}

struct h { // merge

    struct f *f;

    struct g g;

};

struct s { 

    struct h h;

    struct h *ph;

}

void f( void ) {

    struct s S;

    sturct s *pS;

    S.ph = &h;

    S.ph->f = NULL;

    S.ph->g.a = 3;

    s.ph->f.b.a = 3; // with new syntax seg fault, but stylistitically -> was used only once

    s.ph->f->b.a = 3; // you would know you only had to check two pointers.

    s.ph.f.b.a = 3; // total adoption, JS style, every '.' access is considered illegal,

                  //   and there's 3 places you need to check if it's a valid pointer; when in reality it's only 2. 

}

ContinuedContinued

(more on above style)

    struct h *ph_;

    if( ph_ = s.ph ) {

        struct f *pf;

        if( pf = ph_.f ){

            // and really this would be  b_set_a( &pf.b, 3 );

            pf.b .a = 3;

        }

    }



That does remind me of the other extension, of declared variables with the scope of an expression and its following statement block... like for( int .. )  or
while( int ... );  why can't I just arbitraily ( int a, ( a = otherfactors * otherscalars ) ) { ... well I guess if( ... ) but that's a different proposal.

C++ Compiler modification notesC++ Compiler modification notes

The implementation of the correction, is a matter of finding where the error is generated when using '.' to indirect a pointer, and work backwards; an exception handler
can be added for 'if left hand value is a pointer to a class/struct use that instead'. It's a matter of decision of how the stanard is worded whether this should also be
applied recursively for 'pointer to pointer to...'.

It's a very minor differentiation In the GCC Compiler between the handling of CPP_DOT  and CPP_DEREF , and the routine build_indirect_ref  is only referenced in
that one place (definition of build_indirect_ref )... (definition of convert_lvalue_to_rvalue)) which inspects the left hand value to see if it is a pointer, else it returns
an error; with a flag check it could instead just return the expression itself, and then that code and the CPP_DOT handling code would be identitical... resulting with
just a slightly different resulting expression tree instead of emitting errors.

The other difference, at the start of the handling, convert_lvalue_to_rvalue (expr_loc, expr, true, false);  and default_function_array_conversion
(expr_loc, expr);  the convert_lvalue...  routine calls default_function_array_conversion  as part of its evaluation, and then additionally checks
something about an atomic lvalue.

C++ ModificationsC++ Modifications

https://lists.isocpp.org/std-proposals/2020/02/1021.php is a conversation I had badly phrased a sumamry of this gist to start... Please see there for more criticisms.

Regarding C++, it is important to distinguish between raw pointers and other pointer types *_ptr ; In the case of the following code, the use of the '.' operator results
in an error.

struct { int a; } s, *ps;

/* in code... */

ps.a  // illegal expression, generates a compiler error.

This does overlap the funcationality of reference types...

struct s{ int a; } s, *ps;

/* in code... */

void f( struct s &s ) {

    s.a  // legal.

}

void g( struct s *s ) {

    s.a  // proposed legal.

}

void main( void ) {

    struct s s;

    f( &s );

    g( &s ) ;

}

The C++ parser.c file is 1.2MB; and Github refuses to show such a large file; cannot directly link to a line of code for reference...

gcc/cp/parser.c : line 7618 (Release Version 9.2.0)

  /* If this is a `->' operator, dereference the pointer.  */

---  if (token_type == CPP_DEREF)

+++  if (token_type == CPP_DEREF || ((token_type == CPP_DOT)&&(cxx_dialect >= cxx2a)&&( (TYPE_PTR_P (TREE_TYPE (postfix_expression)))

    postfix_expression = build_x_arrow (location, postfix_expression,

                    tf_warning_or_error);

This would be a simpler modification than even the C change.

Offsetof (in an error state for C) but this wouldn't work for C++ anyway? Since I have to #include <stddef.h> for both C and C++, why don't they behave the same? I can
manaully define 'myoffsetof'... (later)

https://github.com/gcc-mirror/gcc/blob/master/gcc/c/c-parser.c#L10507-L10583
https://github.com/gcc-mirror/gcc/blob/master/gcc/c/c-parser.c#L10566
https://github.com/gcc-mirror/gcc/blob/master/gcc/c/c-typeck.c#L2521
https://github.com/gcc-mirror/gcc/blob/master/gcc/c/c-typeck.c#L2050


#include <stdio.h>

#include <stddef.h>

struct inner{

        int c, d;

};

struct s {

        int a, b;

        struct inner Inner;

        struct inner *pInner;

};

void f( void ){

        struct s S;

        struct s *P = &S;

        S.pInner = &S.Inner;

        P.a = 5;

        P.b = 13;

// This is an error; only '.' behaves like '->' not vice versa.

//      printf( "Output: %d %d\n", S->a, S->b );

        printf( "Output: %d %d\n", S.a, S.b );

        printf( "Output: %d %d\n", offsetof( struct s, Inner.c ), offsetof( struct s, pInner.c ) );

}

int main( void ) {

        f();

        return 0;

}

d3x0r@battlement c2x-test]$ ./tst

In file included from a.c:2:

a.c: In function 'f':

a.c:22:60: error: '0->pInner' is a pointer; did you mean to use '->'?

   22 |  printf( "Output: %d %d\n", offsetof( struct s, Inner.c ), offsetof( struct s, pInner.c ) );

      |                                                            ^~~~~~~~

Output: 5 13

Output: 5 13

Output: 0 4

In file included from b.cc:2:

b.cc: In function 'void f()':

b.cc:23:60: error: cannot apply 'offsetof' to a non constant address

   23 |  printf( "Output: %d %d\n", offsetof( struct s, Inner.c ), offsetof( struct s, pInner.c ) );

      |                                                            ^~~~~~~~

Output: 5 13

Output: 5 13

Output: 0 4

C++ Standards Proposal (more)C++ Standards Proposal (more)
In section 8.5.1.5 2)

add: if the first expression of (dot) is a pointer [to an object], then E1.E2 is converted to (*(E1)).E2 .

Although there potential recursion there, without the 'to an object'...

class X ****x;   `x.property` could be `(*(*(*(*(x)))).property`

and unique_ptr<X> ***upx;    `upx.reset();` could be (*(*(*(upx)))).reset() and still work...

Maybe reword the above specifying that 'pointer to pointer to...' is still an invalid type to '.' and only one level of pointer indirection may apply. ( ' The unary * operator
performs indirection:' )



Although, having reflected on the above shorthand ability, I think maybe it could stay. There aren't a lot of use of ****  that aren actually arrays, which would be
indexed with a non-zero index potentially; that is the '.' operator only dereferences the 0'th element.

Sections from C++ 17 draft which may be relaventSections from C++ 17 draft which may be relavent

6.4.5 defines 'class member access' about how the id on the right of -> and . is looked up...

8.5.1.5 2) For the first option (dot) the first expression shall be a glvalue having class type. For the second option (arrow) the first expression shall be a prvalue having
pointer to class type
E1->E2 is converted to the equivalent form (*(E1)).E2;  the remainder of 8.5.1.5 will address only the first option (dot).  ...

23.11 Smart Pointers .1 1) A unique pointer is an object that owns another object and manages that other object through a pointer. More
precisely, a unique pointer is an object u that stores a pointer to a second object p ...

So, a Smart pointer is an object, not a pointer to an object; but clearly 'is an object that owns [a pointer to] another object]. where did 'object' get defined to relate to
'class type' or 'pointer to class type'....

6.6.1 Memory Model 3) "A memory location is either an object of scalar type or a maximal sequence of adjacent bit-fields all having nonzero width "

6.7.2 Compound Types 3) ...' A pointer to objects of type T is referred to as a “pointer to T '...

6.4.5 Class member access [basic.lookup.classref] "1 In a class member access expression (8.5.1.5), if the . or -> token is immediately followed by an identifier
followed by a <, the identifier must be looked up to determine whether the < is the beginning of a template argument list (17.2) or a less-than operator. The identifier is
first looked up in the class of the object expression. If the identifier is not found, it is then looked up in the context of the entire postfix-expression and shall name a
class template. "
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