
Multidimensional subscript operator
Document #: P2128R0
Date: 2020-03-02
Project: Programming Language C++
Audience: EWG, EWGI
Reply-to: Mark Hoemmen <mhoemmen@stellarscience.com>

David Hollman <dshollm@sandia.gov>
Corentin Jabot <corentin.jabot@gmail.com>
Isabella Muerte <imuerte@opayq.com>
Christian Trott <crtrott@sandia.gov>

Abstract

We propose that user-defined types can define a subscript operator with multiple arguments
to better support multi-dimensional containers and views.

Tony tables

Before After

template<class ElementType, class Extents>
class mdpan {
template<class... IndexType>
constexpr reference operator()(IndexType...);

};

int main() {
int buffer[2*3*4] = { };
auto s = mdspan<int, extents<2, 3, 4>>(buffer);
s(1, 1, 1) = 42;

}

template<class ElementType, class Extents>
class mdpan {
template<class... IndexType>
constexpr reference operator[](IndexType...);

};

int main() {
int buffer[2*3*4] = { };
auto s = mdspan<int, extents<2, 3, 4>> (buffer);
s[1, 1, 1] = 42;

}

Motivation

Types that represent multidimensional views (mdspan), containers (mdarray), grid, matrixes,
images, geometric spaces, etc, need to index multiple dimensions.

1

mailto:mhoemmen@stellarscience.com
mailto:dshollm@sandia.gov
mailto:corentin.jabot@gmail.com
mailto:imuerte@opayq.com
mailto:crtrott@sandia.gov

In the absence of a more suitable solution, these classes overload the call operator. While
this is functionally equivalent to the proposed multidimensional subscript operator, it does
not carry the same semantic, making the code harder to read and reason about. It also
encourages non-semantical operator overloading.

Proposal

We propose that the operator[] should be able to accept 1 or more argument, including
variadic arguments. Both its use and definition would match that of operator(), with the
exception that at least one argument would be required.

What about comma expressions?

In C++20 we deprecated the use of comma expressions in subscript expressions [P1161R3][1].
This proposal would make these ill-formed and give a new meaning to commas in subscript
expressions. While the timeline is aggressive, we think it is important that this feature be
available for the benefit of mdspan and mdarray. At the time of writing [P1161R3], [1] has been
implemented by at least GCC, clang and MSVC. [P1161R3][1] further denotes that the cases
where comma expressions appear in subscript are vanishingly rare.

However, an implementation could keep supporting the current behavior as an extension,
for example, they could fall-back to a comma expression if no overload is found for an
expression list, or always assume a comma expression in the presence of a C-array.

Because we should not make C++ more confusing, we think the standard should not continue
to support the old meaning of a comma in subscript expressions.

What about [foo][bar]?

As mentioned in [P1161R3][1], an operator[] can return an object which has itself an
operator[]. Therefore chaining multiple [] to index a single object isn’t a viable proposal.

2

Wording

�? Expressions [expr]

�? Postfix expressions [expr.post]

Postfix expressions group left-to-right.
postfix-expression:

primary-expression
postfix-expression [expr-or-braced-init-list]
postfix-expression [expression-list]
postfix-expression [braced-init-list]
postfix-expression (optexpression-list)
simple-type-specifier (optexpression-list)
typename-specifier (optexpression-list)
simple-type-specifier braced-init-list

�? Subscripting [expr.sub]

A postfix expression followed an expression in square brackets is a postfix expres-
sion. One of the expressions shall be a glvalue of type “array of T” or a prvalue of
type “pointer to T” and the other shall be a prvalue of unscoped enumeration or
integral type. The result is of type “T”. The type “T” shall be a completely-defined
object type.1 The expression E1[E2] is identical (by definition) to *((E1)+(E2)),
except that in the case of an array operand, the result is an lvalue if that operand
is an lvalue and an xvalue otherwise. The expression E1 is sequenced before the
expression E2.

[Note: A comma expression appearing as the expr-or-braced-init-list of a sub-
scripting expression is deprecated; see [depr.comma.subscript]. —end note]

[Note: Despite its asymmetric appearance, subscripting is a commutative opera-
tion except for sequencing. See [expr.unary] and [expr.add] for details of * and +
and [dcl.array] for details of array types. —end note]

A braced-init-list shall not be used w With the built-in subscript operator. a
braced-init-list shall not be used and a expression-list shall be a single expression.

1This is true even if the subscript operator is used in the following common idiom: &x[0].

3

�? Overloaded operators [over.oper]

�? Subscripting [over.sub]

operator[] shall be a non-static member function with exactly at least one parameter. It
implements the subscripting syntax

postfix-expression [expr-or-braced-init-list]

postfix-expression [expression-list]
postfix-expression [braced-init-list]

Thus, a subscripting expression x[y, ,...] is interpreted as x.operator[](y, ,...) for a
class object x of type T if T::operator[](T1, , T2, T3) exists and if the operator is selected
as the best match function by the overload resolution mechanism. [Example:
struct X {

Z operator[](std::initializer_list<int>);
};
X x;
x[{1,2,3}] = 7; // OK: meaning x.operator[]({1,2,3})
int a[10];
a[{1,2,3}] = 7; // error: built-in subscript operator

—end example]

�? Comma operator [expr.comma]

In contexts where comma is given a special meaning, [Example: in lists of arguments to
functions, subscript expressions and lists of initializers —end example] the comma operator
as described in this subclause can appear only in parentheses. [Example:

f(a, (t=3, t+2), c);

has three arguments, the second of which has the value 5. —end example]

[Note: A comma expression appearing as the expr-or-braced-init-list of a subscripting ex-
pression [expr.sub] is deprecated; see depr.comma.subscript. —end note]

�? C++ and ISO C++ 2020 [diff.cpp20]

�? [expr.sub]: declarations [diff.cpp20.expr.sub]

Change: Change the meaning of comma in subscript expressions

4

Rationale: Enable repurposing a deprecated syntax to support multidimensional indexing
Effect on original feature: valid C++ program that uses a comma expression within a
subscript expression may fail to compile
arr[1, 2] //was equivalent to arr[(1, 2)], now equivalent to arr.operator[](1, 2) or ill-formed

�? Commaoperator in subscript expressions[depr.comma.sub-
script]

A comma expression appearing as the expr-or-braced-init-list of a subscripting expression
is deprecated. [Note: A parenthesized comma expression is not deprecated. —end note]
[Example:

void f(int *a, int b, int c) {
a[b,c]; // deprecated
a[(b,c)]; // OK

}

—end example]

Acknowledgments

References

[1] Corentin Jabot. P1161R3: Deprecate uses of the comma operator in subscripting expres-
sions. https://wg21.link/p1161r3, 2 2019.

[N4849] Richard SmithWorking Draft, Standard for Programming Language C++
https://wg21.link/N4849

5

https://wg21.link/p1161r3
https://wg21.link/N4849

	1 Abstract
	2 Tony tables
	3 Motivation
	4 Proposal
	5 What about comma expressions?
	6 What about [foo][bar]?
	7 Wording
	8 Expressions
	8.1 Postfix expressions
	8.1.1 Subscripting

	9 Overloaded operators
	9.1 Subscripting
	9.2 Comma operator

	10 C++ and ISO C++ 2020
	10.1 [expr.sub]: declarations

	11 Comma operator in subscript expressions
	12 Acknowledgments
	13 References

