
Paper Number: P2075R0

Title: Philox as an extension of the C++ RNG engines

Authors: Pavel Dyakov <pavel.dyakov@intel.com>

 Ilya Burylov <ilya.burylov@intel.com>

 Ruslan Arutyunyan <Ruslan.Arutyunyan@intel.com>

 Andrey Nikolaev <Andrey.Nikolaev@intel.com>

Audience: SG6 (Numerics)

Date: 2020-01-13

I. Introduction
C++11 introduced a comprehensive mechanism to manage generation of random numbers in the

<random> header file (including distributions, pseudo random and non-deterministic engines).

We proposed a set of engine candidates for the C++ standard extension in P1932R0 paper [1]. Current

paper is focused on the family of the counter-based Philox engines.

II. Motivation
See P1932R0 [1] for motivation.

III. General Description
Philox engine is one of the counter-based engines which were introduced in 2011 in [2] for the first

time. All counter-based engines have a small state (e.g. Philox4x32-10 has 6 x 32-bits elements in state)

and long period (e.g. period of Philox4x32-10 is 2^130). This family effectively supports parallel

simulations via block-splitting techniques and enable a broad HW spectrum including

CPU/GPU/FPGA/etc.

Philox engine was chosen as an extension of the list of C++ random number engines based on the

following (criteria proposed in P1932R0 [1]):

• Statistical properties. Authors of the counter-based engines took crypto-algorithm as the

reference for Philox and claimed that Philox family passes rigorous statistical tests including

TestU01’s BigCrush [2]. This statement was independently verified by the different authors,

e.g.: TestU01 batteries for Philox4x32-10 and Philox4x32-7 were tested in [4], DieHard testing

results for Philox4x32-10 were published as part of Intel® Math Kernel Library (Intel® MKL)

documentation in [5].

• Usage scenarios. Philox is broadly used in Monte-Carlo simulations which require massively

parallel random number generation (e.g. Philox in financial simulations [6], high-quality pseudo-

random behavior simulation [7], etc.).

• HW friend-ness. Philox engine can be easily vectorized and parallelized on CPU, for example

Intel® MKL provides highly vectorized version of Philox4x32-10. Philox is proven to work on GPU

– it’s implemented in the GPU-optimized Nvidia and AMD libraries: cuRand and rocRand.

IV. Algorithm Details
Detailed description of the Philox engine can be found in [2].

Philox (Philox-n x w - r) engine relies on substitution-permutation network (SP-network). SP-network

consists of S-boxes and P-boxes responsible for producing highly diffusive bijection and permutations

respectively. A state of the Philox contains n words of size w and n/2 keys which are used to produce

round-keys for each of the r-rounds (see Figure 1 for 1-round illustration).

mailto:pavel.dyakov@intel.com
mailto:ilya.burylov@intel.com
mailto:Ruslan.Arutyunyan@intel.com
mailto:Andrey.Nikolaev@intel.com
https://arxiv.org/pdf/1408.5526.pdf

S S S S...

P1
 r

o
u

n
d

M0 C0 M1 C1 M2 C2 M(N/2-1) C(N/2-1)

Figure 1. 1 round of SP-network

Each S-box has 2 elements as input (see Figure 2) and performs next computation:

Equation 1.

𝐿𝑘
′ = 𝑚𝑢𝑙𝑙𝑜(𝑅𝑘, 𝑀𝑘)

𝑅𝑘
′ = 𝑚𝑢𝑙ℎ𝑖(𝑅𝑘, 𝑀𝑘)⨁𝑘𝑒𝑦𝑘

𝑖 ⨁𝐿𝑘

Round-keys 𝑘𝑒𝑦𝑘
𝑖 are generated by using:

Equation 2.

𝑘𝑒𝑦𝑘
𝑖+1 = 𝑘𝑒𝑦𝑘

𝑖 + 𝐶𝑘

where:

• i – index of round

• k – index of S-box

• Lk/Lk’ – the first input/output value

• Rk/Rk’ – the second input/output value

• 𝑘𝑒𝑦𝑘
𝑖 – round key, specific for S-box and round

• 𝑘𝑒𝑦𝑘
0 – initial key from the engine state

• Mk – multiplier, specific S-box constant

• Ck – round constant, specific for S-box

• mullo - the low half of the product ((𝑎 ∗ 𝑏)𝑚𝑜𝑑 2𝒘)

• mulhi – the high half of the product (⌊(𝑎 ∗ 𝑏)/2𝒘⌋)

• ⨁ - bitwise XOR operator

For n = 2, the Philox-2 × w-r performs r rounds of the Philox S-box on a pair of w-bit inputs. For larger n,

the inputs are permuted using the Threefish n-word P-box before being fed, two-at-a-time, into n/2

Philox S-boxes [2]. P-box of Threefish [9] is represented in Table 1:

Lk Rk

Sk

Lk Rk

Mk Ck

Figure 2. S-box

Table 1. P-box of Threefish algorithm. Indexes of output words

 Index of input word
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n =
4 0 3 2 1

8 2 1 4 7 6 5 0 3

16 0 9 2 13 6 11 4 15 10 7 12 3 14 5 8 1

Authors of Philox engine recommend next algorithm’s parameters ([2], [8]):

• n is {2; 4; 8; 16}

• w equals to 32 or 64

• M satisfies “avalanche criterion” (any single-bit change in the input should result (on average) in

a 0.5 probability change in each output bit)

• C is selected based on crush-resistance testing

• r is greater than or equal to 8

We propose API with broader algorithm parameters to support possible modifications of Philox engine.

V. Proposed API
We propose to add Philox to the C++ standard as the philox_engine engines’ family with several

instantiations: philox4x32x10, philox4x64x10.

Class template philox_engine

philox_engine is a counter-based random number engine described in [2]. It produces high quality

unsigned integer random numbers of type UIntType in the closed interval [0, 2^w-1]. The state of

philox_engine object is of size (n+n/2) contains n words and n/2 keys of size w both.

template<typename UIntType, std::size_t w, std::size_t n, std::size_t r, UIntType

 ...consts>

class philox_engine {

 static constexpr std::size_t array_size = n / 2; // Exposition only

public:

 // types

 typedef UIntType result_type;

 // engine characteristics

 static constexpr std::size_t word_size = w;

 static constexpr std::size_t word_count = n;

 static constexpr std::size_t round_count = r;

 static constexpr std::array<result_type, array_size> multipliers;

 static constexpr std::array<result_type, array_size> round_consts;

 // constructors and seeding functions

 ...

 // generation functions

 ...

};

The following relations shall hold: (𝑛 == 2) || (𝑛 == 4) || (𝑛 == 8) || (𝑛 == 16), 0 < 𝑟, 𝑤 =

𝑛𝑢𝑚𝑒𝑟𝑖𝑐_𝑙𝑖𝑚𝑖𝑡𝑠 < 𝑈𝐼𝑛𝑡𝑇𝑦𝑝𝑒 >: : 𝑑𝑖𝑔𝑖𝑡𝑠, 𝑛 == 𝑠𝑖𝑧𝑒𝑜𝑓 … (𝑐𝑜𝑛𝑠𝑡𝑠).

The following type aliases define the random number engine with two commonly used parameters sets:

Table 2. Proposed philox_engine instantiations

Type Definition
philox4x32x10 using philox4x32x10 = philox_engine<uint32_t, 4, 10, 0xD2511F53,

0x9E3779B9, 0xCD9E8D57, 0xBB67AE85>;
4 32-bits words algorithm with 10 rounds

philox4x64x10 using philox4x64x10 = philox_engine<uint64_t, 4, 10,

0xD2E7470EE14C6C93, 0x9E3779B97F4A7C15, 0xCA5A826395121157,

0xBB67AE8584CAA73B>;
4 64-bits words algorithm with 10 rounds

Other possible options:

Table 3. Other possible philox_engine instantiations

Type Definition
philox2x32x10 using philox2x32x10 = philox_engine<uint32_t, 2, 10, 0xD256d193,

0x9E3779B9>;
2 32-bits words algorithm with 10 rounds

philox2x64x10 using philox2x64x10 = philox_engine<uint64_t, 2, 10,

0xD2E7470EE14C6C93, 0x9E3779B97F4A7C15>;
2 64-bits words algorithm with 10 rounds

philox2x32x10 and philox2x64x10 do not appear to be broadly-used but still show good statistical
properties and performance [8].

philox_engine template parameters and members description are represented below:

Table 4. philox_engine template parameters

Parameter Description
UIntType One of types: unsigned short, unsigned int, unsigned long, or unsigned long

long.
n The number of words in the internal engine state, equals to the number of

values produced by the one generation loop
w The word size
r The number of rounds in the one generation loop
...consts Constants that are used in the algorithm (see Equation 1 and 2). The constants

are grouped per S-box (M, C) where M is a multiplier constant, C is a round
constant. The constants are set for each S-box one after another:
[𝑀0, 𝐶0, 𝑀1, 𝐶1, 𝑀2, 𝐶2 … 𝑀𝑁/2−1, 𝐶𝑁/2−1]

Table 5. philox_engine members description

Type Member object Description
static constexpr std::size_t word_size The template parameter w, determines the

range of values generated by the engine
static constexpr std::size_t word_count The template parameter n, determines the

number of words in the engine state
static constexpr std::size_t round_count The template parameter r, determines the

number of rounds in the Philox algorithm
static constexpr std::array<

UIntType, array_size>

multipliers Contains the Mi elements of the template
parameter …consts

static constexpr std::array<

UIntType, array_size>

round_consts Contains the Ci elements of the template
parameter …consts

VI. Possible Alternative APIs
Template parameter w from the API described in Section V can be deduced from UIntType however

this approach is inconsistent with the other existing C++ engines.

// ***

// Alternative API I: w template parameter is deduced

// ***

template<typename UIntType, std::size_t n, std::size_t r, UIntType ...consts>

class philox_engine {

 static constexpr std::size_t array_size = n / 2; // Exposition only

public:

 // types

 typedef UIntType result_type;

 // engine characteristics

 static constexpr std::size_t word_size = numeric_limits<UIntType>::digits;

 static constexpr std::size_t word_count = n;

 static constexpr std::size_t round_count = r;

 static constexpr std::array<result_type, array_size> multipliers;

 static constexpr std::array<result_type, array_size> round_consts;

 // constructors and seeding functions

 ...

 // generation functions

 ...

}

Template parameter n can also be deduced from the size of the variadic template …consts but it makes

the API less clean for the users.

// ***

// Alternative API II: w and n template parameters are deduced

// ***

template<typename UIntType, std::size_t r, UIntType ...consts>

class philox_engine {

 static constexpr std::size_t array_size = sizeof...(consts) / 2;

public:

 // types

 typedef UIntType result_type;

 // engine characteristics

 static constexpr std::size_t word_size = numeric_limits<UIntType>::digits;

 static constexpr std::size_t word_count = sizeof...(consts);

 static constexpr std::size_t round_count = r;

 static constexpr std::array<result_type, array_size> multipliers;

 static constexpr std::array<result_type, array_size> round_consts;

 // constructors and seeding functions

 ...

 // generation functions

 ...

}

VII. Impact on the Standard
This is a library-only extension. It adds new engine class template and commonly used instantiations.

VIII. References
1. P1932R0 “Extension of the C++ random number generators”: http://open-

std.org/JTC1/SC22/WG21/docs/papers/2019/p1932r0.pdf.

http://open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1932r0.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1932r0.pdf

2. John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: as

easy as 1, 2, 3. In Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’11, pages 16:1–16:12, New York, NY, USA,

2011. ACM. ISBN 978-1-4503-0771-0

3. L’Ecuyer, Pierre & Simard, Richard. (2007). A Software Library in ANSI C for Empirical Testing of

Random Number Generators. ACM Transactions on Mathematical Software - TOMS.

4. Manssen, Markus & Weigel, Martin & Hartmann, Alexander. (2012). Random number

generators for massively parallel simulations on GPU. The European Physical Journal Special

Topics. 210. 10.1140/epjst/e2012-01637-8.

5. Notes for Intel® Math Kernel Library (Intel® MKL) Vector Statistics :

https://software.intel.com/en-us/mkl-vsnotes-philox4x32-10

6. Xu, Linlin & Ökten, Giray. (2014). High Performance Financial Simulation Using Randomized

Quasi-Monte Carlo Methods. Quantitative Finance. 15. 10.1080/14697688.2015.1032549.

7. Wadden, Jack & Brunelle, Nathan & Wang, Ke & El-Hadedy, Mohamed & Robins, G. & Stan,

Mircea & Skadron, Kevin. (2016). Generating efficient and high-quality pseudo-random behavior

on Automata Processors. 622-629. 10.1109/ICCD.2016.7753349.

8. Random123 D. E. Shaw Research ("DESRES"):

http://www.deshawresearch.com/resources_random123.html

9. N. Ferguson, S. Lucks, B. Schneier, B. Whiting, M. Bellare, T. Kohno, J. Callas, and J. Walker. The

Skein hash function family. http://www.schneier.com/skein.pdf, 2010.

https://software.intel.com/en-us/mkl-vsnotes-philox4x32-10
http://www.deshawresearch.com/resources_random123.html

