Paper Number: P2075R0
Title: Philox as an extension of the C++ RNG engines
Authors: Pavel Dyakov <pavel.dyakov@intel.com>
Ilya Burylov <ilya.burylov@intel.com>
Ruslan Arutyunyan <Ruslan.Arutyunyan@intel.com>
Andrey Nikolaev <Andrey.Nikolaev@intel.com>

Audience: SG6 (Numerics)
Date: 2020-01-13

l. Introduction

C++11 introduced a comprehensive mechanism to manage generation of random numbers in the
<random> header file (including distributions, pseudo random and non-deterministic engines).

We proposed a set of engine candidates for the C++ standard extension in P1932R0 paper [1]. Current
paper is focused on the family of the counter-based Philox engines.

II. Motivation
See P1932RO0 [1] for motivation.

IIl. General Description

Philox engine is one of the counter-based engines which were introduced in 2011 in [2] for the first
time. All counter-based engines have a small state (e.g. Philox4x32-10 has 6 x 32-bits elements in state)
and long period (e.g. period of Philox4x32-10 is 22130). This family effectively supports parallel
simulations via block-splitting techniques and enable a broad HW spectrum including
CPU/GPU/FPGA/etc.

Philox engine was chosen as an extension of the list of C++ random number engines based on the
following (criteria proposed in P1932R0 [1]):

e Statistical properties. Authors of the counter-based engines took crypto-algorithm as the
reference for Philox and claimed that Philox family passes rigorous statistical tests including
TestUO01’s BigCrush [2]. This statement was independently verified by the different authors,
e.g.: TestUO1 batteries for Philox4x32-10 and Philox4x32-7 were tested in [4], DieHard testing
results for Philox4x32-10 were published as part of Intel® Math Kernel Library (Intel® MKL)
documentation in [5].

e Usage scenarios. Philox is broadly used in Monte-Carlo simulations which require massively
parallel random number generation (e.g. Philox in financial simulations [6], high-quality pseudo-
random behavior simulation [7], etc.).

e HW friend-ness. Philox engine can be easily vectorized and parallelized on CPU, for example
Intel® MKL provides highly vectorized version of Philox4x32-10. Philox is proven to work on GPU
— it's implemented in the GPU-optimized Nvidia and AMD libraries: cuRand and rocRand.

IV. Algorithm Details

Detailed description of the Philox engine can be found in [2].

Philox (Philox-n x w - r) engine relies on substitution-permutation network (SP-network). SP-network
consists of S-boxes and P-boxes responsible for producing highly diffusive bijection and permutations
respectively. A state of the Philox contains n words of size w and n/2 keys which are used to produce
round-keys for each of the r-rounds (see Figure 1 for 1-round illustration).

mailto:pavel.dyakov@intel.com
mailto:ilya.burylov@intel.com
mailto:Ruslan.Arutyunyan@intel.com
mailto:Andrey.Nikolaev@intel.com
https://arxiv.org/pdf/1408.5526.pdf

Figure 1. 1 round of SP-network

Each S-box has 2 elements as input (see Figure 2) and performs next computation:

Equation 1.
v = mullo(Ry, My,)
R}, = mulhi(Ry, M,)®key.®L,

Round-keys key. are generated by using:

Equation 2.

keyi*' = key} + Cy

Figure 2. S-box

where:
e i—index of round
e k—index of S-box
e L/L —the first input/output value
e Ri/R¢ —the second input/output value
e keyl —round key, specific for S-box and round
e key? —initial key from the engine state
e My — multiplier, specific S-box constant
e C,—round constant, specific for S-box
o mullo - the low half of the product ((a * b)mod 2")
e mulhi—the high half of the product (|(a * b)/2"])
e @ - bitwise XOR operator

For n = 2, the Philox-2 x w-r performs r rounds of the Philox S-box on a pair of w-bit inputs. For larger n,
the inputs are permuted using the Threefish n-word P-box before being fed, two-at-a-time, into n/2
Philox S-boxes [2]. P-box of Threefish [9] is represented in Table 1:

Table 1. P-box of Threefish algorithm. Indexes of output words

Index of input word
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 |0 3 2 1
n= 8|2 1 4 7 6 5 0 3
16 | O 9 2 13 | 6 11 | 4 15 |10 | 7 12 | 3 14 | 5 8 1

Authors of Philox engine recommend next algorithm’s parameters ([2], [8]):

e nis{2;4;8; 16}

e wequalsto 32 or64

e M satisfies “avalanche criterion” (any single-bit change in the input should result (on average) in
a 0.5 probability change in each output bit)

e Cis selected based on crush-resistance testing

e risgreater thanorequalto 8

We propose API with broader algorithm parameters to support possible modifications of Philox engine.

V. Proposed API

We propose to add Philox to the C++ standard as the philox engine engines’ family with several
instantiations: philox4x32x10, philox4x64x10.

Class template philox_engine

philox_engine is a counter-based random number engine described in [2]. It produces high quality
unsigned integer random numbers of type UIntType in the closed interval [0, 2~w-1]. The state of
philox engine object is of size (n+n/2) contains n words and n/2 keys of size w both.

template<typename UIntType, std::size t w, std::size t n, std::size t r, UIntType
...consts>
class philox engine ({

static constexpr std::size t array size = n / 2; // Exposition only
public:

// types

typedef UIntType result type;

// engine characteristics

static constexpr std::size t word size = w;
static constexpr std::size t word count = n;
static constexpr std::size t round count = r;

static constexpr std::array<result type, array size> multipliers;
static constexpr std::array<result type, array size> round consts;

// constructors and seeding functions

// generation functions

}i

The following relations shallhold: (n == 2) ||(n ==4)||(n == 8)||(n == 16),0 < r,w =
numeric_limits < UIntType >::digits,n == sizeof ... (consts).

The following type aliases define the random number engine with two commonly used parameters sets:

Table 2. Proposed philox_engine instantiations

Type Definition

philox4x32x10 using philox4x32x10 = philox engine<uint32 t, 4, 10, 0xD2511F53,
0x9E3779B9, O0xCDY9E8D57, OxBB67AE85>;

4 32-bits words algorithm with 10 rounds

philox4x64x10 using philox4x64x10 = philox engine<uinté64 t, 4, 10,
0xD2E7470EE14C6C93, 0x9E3779B97F4A7C1l5, 0xCA5A826395121157,
0xBB67AE8584CAAT3B>;

4 64-bits words algorithm with 10 rounds

Other possible options:

Table 3. Other possible philox_engine instantiations

Type Definition
philox2x32x10 using philox2x32x10 = philox engine<uint32 t, 2, 10, 0xD256d193,
0x9E3779B9>;
2 32-bits words algorithm with 10 rounds
philox2x64x10 using philox2x64x10 = philox engine<uinté64 t, 2, 10,
0xD2E7470EE14C6C93, 0x9E3779B97F4A7C15>;
2 64-bits words algorithm with 10 rounds

philox2x32x10 and philox2x64x10 do not appear to be broadly-used but still show good statistical
properties and performance [8].

philox_engine template parameters and members description are represented below:

Table 4. philox_engine template parameters

Parameter Description

UIntType One of types: unsigned short, unsigned int, unsigned long, or unsigned long
long.

n The number of words in the internal engine state, equals to the number of
values produced by the one generation loop

W The word size

r The number of rounds in the one generation loop

.. .consts Constants that are used in the algorithm (see Equation 1 and 2). The constants
are grouped per S-box (M, c) where M is a multiplier constant, C is a round
constant. The constants are set for each S-box one after another:
[Mo, Co, M1, Cy, M3, C; ... MN/Z—I'CN/Z—l]

Table 5. philox_engine members description

Type Member object Description
static constexpr std::size_ t | word size The template parameter w, determines the
range of values generated by the engine
static constexpr std::size t | word count The template parameter n, determines the
number of words in the engine state
static constexpr std::size t | round count The template parameter r, determines the
number of rounds in the Philox algorithm
static constexpr std::array< | multipliers Contains the M; elements of the template
UIntType, array size>
- parameter ..consts
static constexpr std::array< | round consts Contains the C; elements of the template
UIntType, array size>
- parameter ..consts

VI. Possible Alternative APIs

Template parameter w from the APl described in Section V can be deduced from UIntType however
this approach is inconsistent with the other existing C++ engines.

// KA AR A A A AR A A A A A A AR A A A A AR AR A AR A A A AR A A I A A A A AR A A A A A A A A A A Ak A A A kA Ak kA Ak, k kK

// Alternative API I: w template parameter is deduced
// khkkhkkhkhkhkhkkhkhkhkhkhhkhkhkhhhkhkhkhhhkhkhkhhhhhhhhkhkhkhhhkhhkhhrhkhkhkhrhhkhhhkhrhkkhhkhrhkhkhkdhhkrhkkhkhkhrhkhkhkx

template<typename UIntType, std::size t n, std::size t r, UIntType ...consts>
class philox engine {
static constexpr std::size t array size = n / 2; // Exposition only

public:
// types
typedef UIntType result type;

// engine characteristics

static constexpr std::size t word size = numeric_ limits<UIntType>::digits;
static constexpr std::size t word count = n;
static constexpr std::size t round count = r;

static constexpr std::array<result type, array size> multipliers;
static constexpr std::array<result type, array size> round consts;

// constructors and seeding functions

// generation functions

Template parameter n can also be deduced from the size of the variadic template ..consts but it makes
the API less clean for the users.

// kA hkhkhkhkhkrhkhkh kA hhkrhhkrhhkrhkhkhhhkhhkrhhkhhhkrhkhkhhhkhhkrhkhkhkhhkrhkhkhhkdrhhkrhkkhkrkhkhkxkxkkxkx*k

// Alternative API II: w and n template parameters are deduced
// R R I b I b b e S b I b I b I S I b I S I b I S S b I b b I S S S b S I b I S b S I S b b b b b b I b b b S b I b b b b S e i

template<typename UIntType, std::size t r, UIntType ...consts>
class philox engine ({

static constexpr std::size t array size = sizeof... (consts) / 2;
public:

// types

typedef UIntType result type;

// engine characteristics

static constexpr std::size t word size = numeric_ limits<UIntType>::digits;
static constexpr std::size t word count = sizeof...(consts);
static constexpr std::size t round count = r;

static constexpr std::array<result type, array size> multipliers;
static constexpr std::array<result type, array size> round consts;

// constructors and seeding functions

// generation functions

VIl. Impact on the Standard

This is a library-only extension. It adds new engine class template and commonly used instantiations.

VIIl. References

1. P1932R0 “Extension of the C++ random number generators”: http://open-
std.org/JTC1/SC22/WG21/docs/papers/2019/p1932r0.pdf.

http://open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1932r0.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1932r0.pdf

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: as
easy as 1, 2, 3. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC’11, pages 16:1-16:12, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0771-0

L’Ecuyer, Pierre & Simard, Richard. (2007). A Software Library in ANSI C for Empirical Testing of
Random Number Generators. ACM Transactions on Mathematical Software - TOMS.

Manssen, Markus & Weigel, Martin & Hartmann, Alexander. (2012). Random number
generators for massively parallel simulations on GPU. The European Physical Journal Special
Topics. 210. 10.1140/epjst/e2012-01637-8.

Notes for Intel® Math Kernel Library (Intel® MKL) Vector Statistics :
https://software.intel.com/en-us/mkl-vsnotes-philox4x32-10

Xu, Linlin & Okten, Giray. (2014). High Performance Financial Simulation Using Randomized
Quasi-Monte Carlo Methods. Quantitative Finance. 15. 10.1080/14697688.2015.1032549.
Wadden, Jack & Brunelle, Nathan & Wang, Ke & El-Hadedy, Mohamed & Robins, G. & Stan,
Mircea & Skadron, Kevin. (2016). Generating efficient and high-quality pseudo-random behavior
on Automata Processors. 622-629. 10.1109/1CCD.2016.7753349.

Random123 D. E. Shaw Research ("DESRES"):

http://www.deshawresearch.com/resources random123.html

N. Ferguson, S. Lucks, B. Schneier, B. Whiting, M. Bellare, T. Kohno, J. Callas, and J. Walker. The
Skein hash function family. http://www.schneier.com/skein.pdf, 2010.

https://software.intel.com/en-us/mkl-vsnotes-philox4x32-10
http://www.deshawresearch.com/resources_random123.html

