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Introduction 
Derivatives are vital a wide variety of computing applications, including numerical optimization, 
solution of nonlinear equations, sensitivity analysis, and nonlinear inverse problems. Virtually 
every process could be described with a mathematical function. A mathematical function can be 
thought of as an association between elements from different sets. Derivatives can track how a 
varying quantity depends on another quantity, for example how the position of a planet as the 
time varies. Derivatives and gradients allows us to explore the properties of a function and thus 
the described process as a whole. Also, gradients are an essential component in 
gradient-based optimization methods, that have become more and more important in recent 
years, in particular with its application training of (Deep) Neural Networks. 
 
Derivatives can be computed numerically, but unfortunately the finite differences methods are 
problematic due to the approximation operated and the finite precision of floating point values 
used, and so the implementation of the method faces precision and round off problems which 
can affect the overall precision of the computation. This problem becomes worse with higher 
order derivatives. 
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The computational complexity of many problems depend on the number of input variables which 
poses scalability issues. This paper describes a broad set of domains where scalable derivative 
computations are essential. We make an overview of the major techniques in computing 
derivatives, and finally, we introduce the flagman of computational differential calculus -- 
algorithmic (also known as automatic) differentiation (AD). AD makes a clever use of the ‘nice’ 
mathematical properties of the chained rule and generative programming to solve the scalability 
issues by inverting the dependence on the number of input variables to the number of output 
variables. It gives us a tool to augment the regular function computation with instructions 
calculating its derivatives.  
 
Differentiable programming is a programming paradigm in which the programs can be 
differentiated throughout, usually via automatic differentiation. The main scope of this document 
is to open a discussion on the possible scenarios enabling differential programming in C++. It 
briefly introduces possible approaches to implement AD such as a library solution, a language 
solution, and a library solution using future language features. 
 

Background 
Derivatives and gradients can be computed in several different ways [2]: 

● Derivation by hand is a tedious and error-prone process. In case the initial function 
changes we need to remember to invalidate the derivative and manually derive it again. 
The manual derivation usually assumes derivation of a math expression in the math 
domain and translating it to code. It is virtually impossible to manually derive an 
algorithm because of its multi-level dependencies.  

● Symbolic Differentiation (SD) is a method for automatically applying the chain rule to 
mathematical functions. This is the approach implemented in languages like 
Mathematica [15] or Maple [14]. It is limited to closed form expressions, that is, it cannot 
handle control flow [17]. 

● Divided (or Finite) Differentiation (DD/FD), a numerical method to approximate a 
derivative. Its implementation quickly reaches the limitations of the machine epsilon and 
the floating point representation issues. Usually, the algorithm can compute the 
derivative with a user-defined precision. This includes iteration and poses problems in 
convergence. Another problem for this method is that it's hard to find a good perturbation 
with the right tradeoff between maintaining numerical stability and accuracy. 

● Automatic Differentiation (AD), is a set of methods  that allows to efficiently differentiate 
Algorithms​ (as opposed to just ​mathematical functions​ in symbolic differentiation). Two 
main modes are used, Forward Automatic Differentiation (FAD) and Reverse Automatic 
Differentiation (RAD). 

 



Automatic Differentiation and Symbolic differentiation are often confused. They are similar when 
dealing with single expressions (e.g. ​f(x) = x*x​, in both cases give the same result, ​f'(x) = 
2​*x​), but the automatic differentiation method(s) include rules for efficiently differentiating 
sequences​ of instructions, exploiting the existent code structure to optimize the use of 
intermediate variables and (to some degree) control flow. 
 
Historically, Computer Algebra Systems (CAS) such as Macsyma (now Maxima [13]), Maple 
[14], and Mathematica [15] natively supported derivation as built-in (typically in the form of 
Symbolic Differentiation). 
 
In the last decades, several other libraries [2], implemented in many different languages, have 
been developed to solve the problem of differentiation, in the form of Automatic Differentiation 
(implementing forward mode or, more recently reverse mode).  
 
In the last few years, graph-based packages used in Deep Learning, such as Tensorflow, 
(py)Torch and mxNet, supported automatic differentiation too, and this gave them a competitive 
advantage to packages that didn't. These packages are used to implement the 
"backpropagation" step in training, that is equivalent to Automatic Differentiation in reverse 
mode ([9], [6]). 
 
More recently, some languages (e.g. Swift [7], Julia [4], Halide [8], DiffTaichi [16]) introduced 
differentiation as a first class citizen in the language, allowing differentiation of code under 
specific conditions (in a form more similar to AD than to SD). 
 

Numerical Differentiation 
 By definition the first derivative is 

(x)f ′ = lim
h→0 h

f (x+h)−f (x)  

The simplest finite differences method consists in applying the definition, but with a finite value 
for h. A naïve implementation follows directly from the definition, by replacing the limit with a 
small number taken as a parameter: 

template<typename F> 

double ​asymmetric_diff​(F f, double h, double x) { 
    return (f(x+h) - f(x))/h; 

} 

 
 
 



Other methods use more sample points and different sampling schemes to achieve more 
precise results. 
Unfortunately, due to the nature of floating point representations used in modern computers, we 
cannot choose an arbitrarily small number for h, as on one side we need to have a value of ​h 
small enough to consider the finite difference a good enough approximation, but on the other 
side h need not to be too small to avoid introducing roundings and cancelations in our 
computation. 
The following figure shows the error of computing the derivative of the function ​sin​(x)​ in ​x=​1​ as 
a function of the displacement h and type ​double​.

 
And this is the same experiment with ​float​.  

Empirically, the "sweet spot" is at ​h=​5E-9​ for ​double​ and ​h=​2.5E-4​ for ​float​, but in other tests 
cases the optimal value can move by some orders of magnitude. Given T,  is the value ofεT  
std​::numeric_limits<​T​>::epsilon()​, some text report that the optimal value would be 

, but that's impossible to calculate in general, as it depends both on the value h = 2√εT f (x)/f (x)| ′′ |  
of x and the specific value of the function and its second derivative. In most cases, a good 
approximation is choosing .h = √εT  
 
 
 
 



 

Automatic Differentiation 

Algorithm and Transformation 
The AD transformation uses the properties of the Chain Rule of differential calculus: 
 

(g(h(x))) (g(h(w ))) (g(w )) (w )y = f = f 0 = f 1 = f 2 = w3  
w0 = x  

(w )w1 = h 0  
(w )w2 = g 1  
(w )w3 = f 2 = y  

 
=dx

dy dy
dw2 dw1

dw2
dx
dw1  

 
A straightforward interpretation of the mathematical properties is that each function can be split 
into smaller, atomic operations where the differentiation rules can be applied. We can 
automatically visit every expression and transform it. The canonical form of the chained rule 
expresses the derivative with respect to function’s input parameters, that is, the independent 
variable (seed) is the function parameter. This is useful when we compute a derivative in wrt a 
single parameter (a single direction). The complexity of the derivative computation depends on 
the number of the input parameters. This approach is called forward/tangent mode AD. Let's 
consider:  
 

(x , )f 1 x2 =  (x )1 − x2
2 + x2  when x1 > x2  

 x2  when x1 ≤ x2  

 

(x , )f 1 x2  f /dx1d  f /dx2d  

f(x1, x2) { 
  x1 = x1 
  x2 = x2 
  if (x1 > x2) 
    a = (x1 - x2)  
    b = a*a 
    return a + x2 
  return x2 
} 

f_dx1(x1, x2) { 
  dx1 = 1 
  dx2 = 0 
  if (x1 > x2) 
    da = dx1 - dx2 
    db = a*da + da*a 
    return da + dx2 
  return dx2 
} 

f_dx2(x1, x2) { 
  dx1 = 0 
  dx2 = 1 
  if (x1 > x2) 
    da = dx1 - dx2 
    db = a*da + da*a 
    return da + dx2 
  return dx2 
} 



 
 
 
When we start differentiating in multiple directions we will notice that a lot of the intermediary 
results can be shared between different directions of the derivatives with a little tuning. The 
chained rule is symmetrical. This means that we can express the canonical form of the chained 
rule with respect to the function’s output parameters instead. This means that the complexity of 
the algorithm will depend on the number of output parameters which in many cases is 
significantly smaller than the number of input parameters. This approach is called 
reverse/adjoint mode. It's harder to implement but it reuses many intermediary computations 
and reduces the algorithm complexity in most of the interesting cases, i.e. when the number of 
input parameters is much larger than the number of outputs. Let's consider again:  

(x , )f 1 x2 =  (x )1 − x2
2 + x2  when x1 > x2  

 x2  when x1 ≤ x2  

 
 

(x , )f 1 x2   f (x , )∇ 1 x2  

f(x1, x2) { 
  x1 = x1 
  x2 = x2 
  if (x1 > x2) 
    a = (x1 - x2)  
    b = a*a 
    return a + x2 
  return x2 
} 

f_grad(x1, x2) 
  gz = 1 
  if (x1 > x2) { 
    a = x1 - x2 
    gx2 = gz 
    ga = a*gz + gz*a 
    gx2 += -ga 
    gx1 = ga 
    return {gx1, gx2} 
  gx2 = dz 
  gx1 = 0 
  return {gx1, gx2}; 
} 

 
 

Implementation Approaches 

Forward mode (aka Tangent Linear) 
In forward mode we compute derivatives of the output(s) with respect to each input 
independently, using the traditional chaining rules from analytical differentiation at each step. 



The complexity of this method depends thus on the number of inputs, and so it should be 
applied when the number of input is relatively small, or when the number of outputs is very 
large. 
 
There are two ways to implement the Forward mode. 

Forward mode with Dual Numbers  
One method is using ​dual numbers​ (see appendix A). When an input variable x is replaced with 
a dual number of the form x + eps (i.e. having the epsilon part set to 1), the function will produce 
a result of type dual containing the function value at x together with its partial derivative with 
respect to x. 
 
For example, let's consider this function: 

double​ ​f​(​double​ x1, ​double​ x2) { 
    ​if​ (x1 > x2) { 
        ​double​ a = x1 - x2; 
        ​return​ a*a + x2; 
    } 

    ​return​ x2; 
} 

 
But when we substitute the first type with a dual number, the result is: 

dual ​f​(dual x1, ​double​ x2) { 
    ​if​ (x1.real() > x2) { 
        dual a = x1 - x2; ​// the dual number a has the  
                          ​// form {x1.real() - x2, x1.eps()}; 
        ​return​ a*a + x2; ​// the result is dual, and has the form 
                         ​// {(x1.real() - x2)*(x1.real() - x2) + x2, 
                         ​//       (x1.real() - x2)*x1.eps() + 
                         //              x1.eps()*(x1.real() - x2)} 

} 

return​ x2; ​// the result is a real, which can be  
                 ​// converted to a dual of the form {x2, 0} 
} 

 
so ​f​({x1, ​1​}, x2).​real​()​ is the same as ​f​(x1, x2)​, while ​f({x1, ​1​}, x2).eps()​ is 
2​*(x1-x2)​ for ​x1>x2​ and ​0​ for ​x1<=x2​, which is exactly the partial derivative of ​f​ with respect 
to ​x1​. 
We can use a different ​kind​ of dual numbers (with one real component and multiple epsilon 
parts, one for each variable) for handling multiple parameters, and calculate all the partial 



derivatives in a single pass. The complexity of this method, in any of these cases, depends 
linearly on the number of input variables. 

Forward mode (AST Transformation) 
Another method is to produce one single piece of code that can then be customized in different 
ways, is also the method implemented in CLAD which performs an AST to AST transformation 
to produce a differentiated form. 
Let's use the same example as above: 

double​ ​f​(​double​ x1, ​double​ x2) { 
    ​if​ (x1 > x2) { 
        ​double​ a = x1 - x2; 
        ​return​ a*a + x2; 
    } 

    ​return​ x2; 
} 

The function df produced by clang looks like: 

double​ ​df​(​double​ x1, ​double​ x2) { 
  ​double​ dx1 = ​?​; 
  ​double​ dx2 = ​?​; 
  ​if​ (x1 > x2) { 
    ​double​ a = x1 - x2; 
    ​double​ da = dx1 - dx2; 
    ​return​ a*da + da*a + dx2; 
  } 

  ​return​ dx2; 
} 

In ​df​ the two components ​dx1​ and ​dx2​ (and any other differential) form a versor (i.e. a vector 
having norm 1) along which the derivative is computed. The easiest way, which incidentally 
produces a lot of obvious optimization, is choosing dx and dy (and any other differential) to form 
a trivial orthonormal base, i.e. in this case (​dx1 = ​1​, dx2 = ​0​) and (​dx1 = ​0​, dx2 = ​1​). The 
two sets produce the two partial derivatives with respect to ​x​ and ​y​ respectively. Appendix C 
shows the AST of both ​f​ and ​df​.  

Reverse mode (Adjoint) 
In reverse (adjoint) mode, the computation of derivatives proceeds from the outputs to the 
inputs, following the usual derivation chain rules. In this way the complexity of the final result is 
independent from the number of inputs. 
 

double​ ​f​(​double​ x1, ​double​ x2) { 
    ​if​ (x1 > x2) { 



        ​double​ a = x1 - x2; 
        ​return​ a*a + x2; 
    } 

    ​return​ x2; 
} 

 

std​::tuple<​double​, ​double​> gradf(​double​ x1, ​double​ x2) { 
    ​double​ gz = ​1​;      ​// return statement(s) 
    ​if​ (x1 > x2) { 
        ​double​ a = x1 - x2;      ​// From forward pass 
        ​double​ gx2 = gz;         ​// +x2 part of "return a*a+x2;" 
        ​double​ ga = a*gz + gz*a; ​// a*a part of "return a*a+x2;" 
        gx2 += -ga;              ​// -x2 part of "a = x1 - x2;" 
        ​double​ gx1 = ga;         ​// x part of "a = x1 - x2;" 
        ​return​ {gx1, gx2}; 
    } 

    ​double​ gx2 = gz;     ​// x2 part of "return x2" 
    ​return​ {0, gx2};     ​// x1 isn't involved in the computation 
} 

Library vs Language solution 
In the section about Automatic Differentiation we've shown some possible transformations of the 
source code in order to produce partial derivatives and gradients. Some of those solutions could 
be implemented as a Library in ​current ​C++ (e.g. forward differentiation with dual numbers, see 
[12]), and in general AD has been implemented in several libraries in modern C++ [2]. 
We found three main reasons to prefer a language solution to a library solution: 

● Type safety 
Most of these solutions make extensive use of the type system (TMP and Expression 
Templates) to achieve differentiation. As a result, little is left to enforce types in base and 
differentiated expressions. 
A language solution would also allow to differentiate with respect to complex types (e.g. 
structs, vectors) easily, without the need to re-specify the type. 

● Efficiency 
A library solution will have to make use of techniques like TMP and expression 
templates, which can end up being expensive for the compiler, as it will have to maintain 
all these intermediate types. It can also get less efficient when automatic inlining limits 
are reached. The compiler, on the other hand, is already aware of the AST 
representation of the original function, and can perform the differentiation tasks without 
burden to the (already abused) type system. 

● Completeness 



Differentiating control flow code could be impossible for a library solution (or requires 
changing the code significantly, affecting readability), while it's feasible in the language 
[4] 

 
Here are some examples of the problems mentioned above: 

Example 1: Forward differentiation with Boost.Math 
First of all, let's consider the impact of using a library solution by evaluating the impact of 
including the Boost.Math autodiff header (​boost/math/differentiation/autodiff.hpp​) in 
an otherwise empty file. 
 

  int main() {} +#include 

  Time (ms) Size (KB) Time (ms) Size (KB) 

GCC 9.2 No option 48 ~1 2218 220 

-O3 49 ~1 2281 48 

Clang 9.0.0 No option 89 ~1 2404 158 

-O3 91 ~1 2488 23 

 
So in every compiler tested, just including the autodiff header adds several seconds to the 
compilation and multiple hundreds of kilobytes to the final executable. We didn't measure impact 
on memory allocated by the compiler, but we expect a significant difference there too. 
 
Let's now consider the same example we used in the previous section, and show how to 
implement it in boost.math: 

double​ ​f​(​double​ x1, ​double​ x2) { 
    ​if​ (x1 > x2) { 
        ​double​ a = x1 - x2; 
        ​return​ a*a + x2; 
    } 

    ​return​ x2; 
} 

 
First of all, this function needs to be rewritten as generic, at least in the parameter we want to 
differentiate, as it cannot be consumed from boost.math otherwise. 
We could be tempted to write the function like this: 

template​<​typename​ X1, ​typename​ X2> 



auto​ ​f​(X x1, X2 x2) { 
    ​if​ (x1 > x2) { 
        ​auto​ a = x1 - x2; 
        ​return​ a*a + x2; 
    } 

    ​return​ x2; 
} 

But that wouldn't work, as the two ​return​ statements are returning two different types. In case 
of multiple input parameters, we also have to use a special return type, ​promote<...>​: 

template​<​typename​ X1, ​typename​ X2> 
promote<X1, X2> f(X1 x1, X2 x2) { 

    ​if​ (x1 > x2) { 
        ​auto​ a = x1 - x2; 
        ​return​ a*a + x2; 
    } 

    ​return​ x2; 
} 

Thus making the language in which we're writing the function more and more distant than plain 
C++. If we want to get the partial derivative w.r.t. x1, we have to write this code: 

auto​ x1 = make_fvar<​double​, ​1​>(​2.0​); 
auto​ z = f(x1, ​1.0​); 

Example 2: Reverse differentiation with Enoki 
Since Boost.Math doesn't support reverse-mode automatic differentiation, we'll show this 
example in Enoki [19]. 
 
We also have a similar table for compilation times, this time size increase is less relevant, as 
Enoki also links against a dynamic library of more than 500KB. 
 

  int main() {} +#include 

  Time (ms) Size (KB) Time (ms) Size (KB) 

GCC 9.2 No option 48 ~1 1049 18 

-O3 49 ~1 1180 7 

Clang 9.0.0 No option 89 ~1 1190 8 

-O3 91 ~1 1017 7 

 



 
Reverse differentiation needs to know the computational graph in order to reverse the order of 
the operations when computing the gradient, and thus cannot traverse all the control flows. For 
this reason, reverse-mode enabled frameworks usually provide a custom alternative to the 
condition ​if​. In Enoki this function is called ​select​. For this reason, our function becomes less 
and less readable: 

template​<​typename​ Value> 
Value ​f​(Value x1, Value x2) { 
    ​return​ select(x1>x2, (x1-x2)*(x1-x2) + x2, x2); 
} 

For completeness, we report the code used to produce the full gradient: 

FloatD x1 = ​2.0​; 
FloatD x2 = ​1.0​; 
set_requires_gradient(x1); 

set_requires_gradient(x2); 

FloatD z = f(x1, x2); 

backward(z); 

return​ {gradient(x1), gradient(x2)}; 

Implementation 
In the compiler, the differentiation can be implemented in different ways, we know of two 
different ways that can be applied to a C++ compiler (specifically, to clang). 

● Transforming the AST (Appendix C) 
This is implemented in CLAD [10][20] 

● Transforming the SSA IR (Appendix B) 
This is implemented by Julia's Zygote [4] 
 

This leaves some freedom to compiler implementers to decide the strategy that best suits their 
product. 

Appendix A: Dual Numbers 
Dual numbers (Clifford, 1873) are defined in a way similar to complex numbers, with a real 
component and another component multiplied by a base ε. ε is not a real number, but has the 
property ε​2​ = 0 (as opposed as i​2​ = -1 for the imaginary base of complex numbers). 

Properties 
a, b ∈ ℛ, ε ∉ ℛ, ε​2​ = 0 ⇒ a + εb  is a dual number 



Interactions with ℛ 
Given a, b, c ∈ ℛ 
(a+εb) + c = (a+c) + εb 
(a+εb) * c = (ac) + ε(bc) 
 

Interactions between dual numbers 
 

1. Sum of two dual numbers 
Given a, b, c, d ∈ ℛ 
(a+εb) + (c+εd) = (a+c) + ε(b+d) 
The sum of two dual number is the sum of their components 
 

2. Product of two dual numbers 
Given a, b, c, d ∈ ℛ 
(a+εb) * (c+εd) = (ac) + ε(ad+bc) ​+ ε​2​bd 
The real part of the product of two dual numbers is the product of the real parts. The 
epsilon part, on the other hand, is the sum of the products of the real part of the first 
number by the epsilon component of the second number, and the real part of the second 
number and the epsilon component of the first. The ε​2​ part is ignored as, by definition ε​2 
is zero. 
 

3. Square of a dual number 
Given a, b ∈ ℛ 
(a+εb)​2​ = a​2​ + ε(ab + ba) ​+ ε​2​b​2​ = a​2​ + 2ε(ab) 
The square of a dual number is equivalent to multiplying the dual number by itself, so 
from the previous case we have that the real part is squared and the epsilon part is two 
times the product of the real and epsilon part. 
Note that if you consider the case b=1, the real part is the real part squared, and the 
coefficient of epsilon is 2a. 
 

4. n-th power of a dual number 
Given a, b ∈ ℛ 
(a+εb)​n​ = a​n​ + ε(a…ab + aba…a + a…ab) + … = a​n​ + ε(na​n-1​b) 
The n-th power of a dual number follows similar rules, but in this case the real part is a​n 
and the epsilon part is na​n-1​b. 
Note again that when b=1, the epsilon part is na​n-1​. 
 

5. For a given function f(x), switching the parameter x with z=x+ε, the function obtained f(z) 
has an interesting property: the real part of f(z) (denoted as Re[f(z)]) is the same as f(x), 
while the epsilon part (denoted as Eps[f(z)]) is its derivative. Given a ∈ ℛ 



f(x) f(z) = f(x+ε) Re[f(z)] Eps[f(z)] 

a a a 0 

x x + ε x 1 

x+a (x + a) + ε x+a 1 

ax ax + εa ax a 

x​n x​n​ + ε(nx​n-1​) x​n nx​n-1 

 
6. We will now show that given any function that can be expressed as a McLaurin series, 

the property at 5 is maintained. Given a​k​ ∈ ℛ 
 

(x) x xf = ∑
∞

k=0
ak k = a0 + ∑

∞

k=1
ak k  McLaurin expansion of function (x)f  

(z) zf = a0 + ∑
∞

k=1
ak k  is dualz  

(x ) (x )f + ε = a0 + ∑
∞

k=1
ak + ε k  z = x + ε  

(x ) x kxf + ε = a0 + ∑
∞

k=1
ak k + ε ∑

∞

k=1
ak

k−1  Splitting the sum in two sums. 

(x ) (x) f (x)f + ε = f + ε ′   

 
 

 
Reference implementation can be found in [12] path ​pan/include/pan/bases​, in particular files 
dual.hpp​, ​epsilon.hpp​, ​base.hpp​. 

Appendix B: Result of Julia Zygote JIT to LLVM IR  
Zygote.jl [4] example: 

function​ P1(a::​Float64​, b::​Float64​) :: ​Float64 
    ​return​ a ​̂2​ + a*b 
end 

 

https://github.com/mfoco/pan/tree/master/pan/include/pan/bases
https://github.com/mfoco/pan/blob/master/pan/include/pan/bases/dual.hpp
https://github.com/mfoco/pan/blob/master/pan/include/pan/bases/epsilon.hpp
https://github.com/mfoco/pan/blob/master/pan/include/pan/bases/base.hpp


@code_llvm​ P​1​(​0.1​, ​1.0​) 
; a*a 

%2​ = ​fmul​ ​double​ ​%0​, ​%0 
; a*b 

%3​ = ​fmul​ ​double​ ​%0​, ​%1 
; a*a + a*b 

%4​ = ​fadd​ ​double​ ​%2​, ​%3 
ret​ ​double​ ​%4 
 

@code_llvm​ gradient(P​1​, ​0.1​, ​1.0​) 
; gradient = [2*a + b, a] 

; a + a 

 ​%3​ = ​fadd​ ​double​ ​%1​, ​%1 
; 2*a + b 

 ​%4​ = ​fadd​ ​double​ ​%3​, ​%2 
 ​%.sroa.0.0..sroa_idx​ = ​getelementptr​ ​inbounds​ [​2​ ​x​ ​double​], [​2​ ​x​ ​double​]* 
%0​, ​i64​ ​0​, ​i64​ ​0 
; Res[0] = 2*a + b 

store​ ​double​ ​%4​, ​double​* ​%.sroa.0.0..sroa_idx​, ​align​ ​8 
 ​%.sroa.2.0..sroa_idx4​ = ​getelementptr​ ​inbounds​ [​2​ ​x​ ​double​], [​2​ ​x​ ​double​]* 
%0​, ​i64​ ​0​, ​i64​ ​1 
; Res[1] = a  

store​ ​double​ ​%1​, ​double​* ​%.sroa.2.0..sroa_idx4​, ​align​ ​8 
ret​ void 

Appendix C: CLAD forward differentiation 
Original function f: 

double​ ​f​(​double​ x1, ​double​ x2) { 
    ​if​ (x1 > x2) { 
        ​double​ a = x1 - x2; 
        ​return​ a*a + x2; 
    } 

    ​return​ x2; 
} 

 
AST form of f: 
 

FunctionDecl f ​'double (double, double)' 
|-ParmVarDecl x1 ​'double' 



|-ParmVarDecl x2 ​'double' 
`-CompoundStmt 

  |-IfStmt  

  | |-BinaryOperator ​'bool'​ ​'>' 
  | | |-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  | | | `-DeclRefExpr ​'double'​ lvalue ParmVar ​'x1'​ ​'double' 
  | | `-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  | |   `-DeclRefExpr ​'double'​ lvalue ParmVar ​'x2'​ ​'double' 
  | `-CompoundStmt 

  |   |-DeclStmt  

  |   | `-VarDecl a ​'double'​ cinit 
  |   |   `-BinaryOperator ​'double'​ ​'-' 
  |   |     |-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  |   |     | `-DeclRefExpr ​'double'​ lvalue ParmVar ​'x1'​ ​'double' 
  |   |     `-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  |   |       `-DeclRefExpr ​'double'​ lvalue ParmVar ​'x2'​ ​'double' 
  |   `-ReturnStmt 

  |     `-BinaryOperator ​'double'​ ​'+' 
  |       |-BinaryOperator ​'double'​ ​'*' 
  |       | |-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  |       | | `-DeclRefExpr ​'double'​ lvalue Var ​'a'​ ​'double' 
  |       | `-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  |       |   `-DeclRefExpr ​'double'​ lvalue Var ​'a'​ ​'double' 
  |       `-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  |         `-DeclRefExpr ​'double'​ lvalue ParmVar ​'x2'​ ​'double' 
  `-ReturnStmt 

    `-ImplicitCastExpr ​'double'​ <LValueToRValue> 
      `-DeclRefExpr ​'double'​ lvalue ParmVar ​'x2'​ ​'double' 

 
AST form of df: 
 

FunctionDecl df ​'double (double, double)' 
|-ParmVarDecl x1 ​'double' 
|-ParmVarDecl x2 ​'double' 
`-CompoundStmt 

  |-DeclStmt 

  | `-VarDecl dx1 ​'double'​ cinit 
  |   `-FloatingLiteral ​'double'​ ? 
  |-DeclStmt 

  | `-VarDecl dx2 ​'double'​ cinit 
  |   `-FloatingLiteral ​'double'​ ? 



  |-IfStmt 

  | |-BinaryOperator ​'bool'​ ​'>' 
  | | |-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  | | | `-DeclRefExpr ​'double'​ lvalue ParmVar ​'x1'​ ​'double' 
  | | `-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  | |   `-DeclRefExpr ​'double'​ lvalue ParmVar ​'x2'​ ​'double' 
  | `-CompoundStmt 

  |   |-DeclStmt 

  |   | `-VarDecl a ​'double'​ cinit 
  |   |   `-BinaryOperator ​'double'​ ​'-' 
  |   |     |-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  |   |     | `-DeclRefExpr ​'double'​ lvalue ParmVar ​'x1'​ ​'double' 
  |   |     `-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  |   |       `-DeclRefExpr ​'double'​ lvalue ParmVar ​'x2'​ ​'double' 
  |   |-DeclStmt 

  |   | `-VarDecl da ​'double'​ cinit 
  |   |   `-BinaryOperator ​'double'​ ​'-' 
  |   |     |-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  |   |     | `-DeclRefExpr ​'double'​ lvalue Var ​'dx1'​ ​'double' 
  |   |     `-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  |   |       `-DeclRefExpr ​'double'​ lvalue Var ​'dx2'​ ​'double' 
  |   `-ReturnStmt 

  |     `-BinaryOperator ​'double'​ ​'+' 
  |       |-BinaryOperator ​'double'​ ​'+' 
  |       | |-BinaryOperator ​'double'​ ​'*' 
  |       | | |-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  |       | | | `-DeclRefExpr ​'double'​ lvalue Var ​'a'​ ​'double' 
  |       | | `-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  |       | |   `-DeclRefExpr ​'double'​ lvalue Var ​'da'​ ​'double' 
  |       | `-BinaryOperator ​'double'​ ​'*' 
  |       |   |-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  |       |   | `-DeclRefExpr ​'double'​ lvalue Var ​'da'​ ​'double' 
  |       |   `-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  |       |     `-DeclRefExpr ​'double'​ lvalue Var ​'a'​ ​'double' 
  |       `-ImplicitCastExpr ​'double'​ <LValueToRValue> 
  |         `-DeclRefExpr ​'double'​ lvalue Var ​'dx2'​ ​'double' 
  `-ReturnStmt 

    `-ImplicitCastExpr ​'double'​ <LValueToRValue> 
      `-DeclRefExpr ​'double'​ lvalue Var ​'dx2'​ ​'double' 
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