
Make Random Number Engines Seedable
Document #: D2060R0
Date: 2020-01-13
Project: Programming Language C++
Audience: LEWG
Reply-to: Martin Hořeňovský <martin.horenovsky@gmail.com>

Introduction
The C++ standard library provides a set of utilities, that is random number engines, statistical distributions
and seeding utilities, to generate pseudo-random numbers with different properties. Unfortunately, the
current state of seeding random number engines is fundamentally broken.

Motivation
A random number engine as defined in the C++ standard can be seeded in one of 2 ways:

• via a single value of engine’s result_type

• via a type that satisfies the SeedSequence named requirement, such as std::seed_seq

The first option is commonly used together with std::random_device to get a random number engine
with random initial state, like so:
#include <iostream>
#include <random>

int main() {
std::mt19937 urbg(std::random_device{}());
std::cout << urbg() << ’\n’;

}

This code works and should1 print out a different number every run. However, there is a massive difference
between the seed size, which is specified to be unsigned int and thus 32 bits on most commonly used
platforms, and the size of a Mersenne Twister’s internal state, which is 624 32-bit unsigned integers.

A side effect of this kind of insufficiently large random seeding is that if I tell you that the first number
1Assuming good implementation of random_device

1

mailto:martin.horenovsky@gmail.com


generated by urbg is 30460986822, you can quickly3 find the seed and use it to predict all future outputs.

In theory, this can be fixed by using a SeedSequence, such as the standard-provided seed_seq, but there
are two problems with this:

1. We have no way to know how much randomness we have to feed into a seed_seq to initialize a
specific engine, and

2. seed_seq is not a bijection even if you give it enough randomness for target data storage

The second problem can be demonstrated with a simple example4:
#include <array>
#include <iostream>
#include <random>

int main() {
std::seed_seq seq1({0xf5e5b5c0, 0xdcb8e4b1}),

seq2({0xd34295df, 0xba15c4d0});

std::array<uint32_t, 2> arr1, arr2;
seq1.generate(arr1.begin(), arr1.end());
seq2.generate(arr2.begin(), arr2.end());

std::cout << (arr1 == arr2) << ’\n’;
}

This code outputs 1, which shows that two different instances of std::seed_seq, given different 64 bits
of seeding, generate the same 64 bits of output.

These issues mean that properly seeding the Random Number Engines in <random> is impossible, which
should be fixed.

Proposed solution

User should be able to retrieve generator’s seed size

To solve the problem with the full size of a seed for a a random number engine being unknowable, I
propose adding a new requirement on a random number engine in [rand.req.eng]. Specifically, a member
function static constexpr size_t required_seed_size() that returns the number of bytes required
to fully seed random number engine of that type.

2Another interesting thing is that there are no 32 bit seeds that will give you 7 as the first output from urbg. Also, 7 is
not the only number with this property.

3It took about 10 minutes on my desktop PC
4The values are borrowed from a blogpost by Melissa E. O’Neill of PCG

2

https://godbolt.org/z/-SCJCI
http://www.pcg-random.org/posts/cpp-seeding-surprises.html


Introduce new standard types that conform to the SeedSequence requirements

To solve the problems with std::seed_seq, I propose adding new type that conforms to the SeedSequence
requirement to the standard library.

Specifically, I propose adding a type to the standard, sized_seed_seq, whose generate member function
writes out the data exactly as they were passed to the instance during construction. If the amount of data
requested by user from generate is less than the amount of data stored, only the first n bytes is written
out. If the amount of data requested is larger, the behaviour is undefined.

By combining the two changes above, we can now properly seed a random number engine, such as mt19337,
with random data, using code like this:
#include <algorithm>
#include <array>
#include <iostream>
#include <random>

int main() {
std::array<uint32_t, std::mt19337::required_seed_size()> random_data;
std::generate(random_data.begin(), random_data.end(), std::random_device{});
std::mt19937 urbg(std::sized_seed_seq(random_data.begin(), random_data.end()));
std::cout << urbg() << ’\n’;

}

However, while proper random seeding is now possible, the code is quite long and clunky. Because randomly
initializing a random number engine is a common use case, I propose adding generate member function
to random_device, so it can be used as a SeedSequence. This would transform the code above into this:
#include <iostream>
#include <random>

int main() {
std::mt19937 urbg(std::random_device{});
std::cout << urbg() << ’\n’;

}

With this change, it is easier to seed a random number engine with random seed correctly, than it is to
seed it incorrectly. However, random_device does not, and can not, fulfill the SeedSequence requirements.
Because of this I also suggest refining the requirements in the next part.

Refine SeedSequence requirement

To allow for the type std::random_seed_seq to integrate with the rest of the random facilities properly,
I propose renaming the SeedSequence named requirement to RepeatableSeedSeq, and introducing a weaker
requirement using the old name of SeedSequence. This weaker requirement no longer includes the size

3



and the param member functions, and also removes the repeatability requirements on generate called
with the same arguments.

Alternative approach
An alternative approach to changing std::random_device to act as a SeedSequence is to introduce
new type, named random_seed_seq, and have it serve as a SeedSequence whose generate writes out
high-quality random bits.

Goals
To recapitulate, this paper has three goals:

1. Make it possible for generic code to determine how big a seed does a random number engine require.

2. Add a new type satisfying the requirements of SeedSequence to the standard library, one that avoids
some of the problems with std::seed_seq.

3. Improve the usability of seeding by adding a SeedSequence type that seeds with high-quality random
bits, sacrificing repeatability.

Acknowledgments
I want to thank Melissa E. O’Neill whose work I drew upon for this paper.

4


	1 Introduction
	2 Motivation
	3 Proposed solution
	3.1 User should be able to retrieve generator's seed size
	3.2 Introduce new standard types that conform to the SeedSequence requirements
	3.3 Refine SeedSequence requirement

	4 Alternative approach
	5 Goals
	6 Acknowledgments

