
Make std::random_device Less Inscrutable
Document #: D2058R0
Date: 2020-01-13
Project: Programming Language C++
Audience: LEWG
Reply-to: Martin Hořeňovský <martin.horenovsky@gmail.com>

Introduction
The C++ standard library provides a set of utilities to generate pseudo-random numbers with different
properties. It also provides std::random_device for users who desire nondeterministic randomness.

However, implementations are also allowed to employ a deterministic pseudo-random number genera-
tor if providing nondeterministic randomness is impossible. This allows implementations to provide
std::random_device even on any possible platform, but there is a problem with this: the current interface
does not provide a good way of checking whether the implementation provides non-deterministic random
numbers.

Motivation
The standard already provides a way, specifically the std::random_device::entropy() member method,
that the user should be able to use to find out whether random_device provides nondeterministic random
number. In practice, this approach has two large flaws:

• This information is only available at runtime. In practice, an implementation already knows whether it
provides nondeterministic random_device during compilation, and we should expose this information
to the users.

• Implementations do not always implement this function usefully. For example, older versions of
libstdc++ used to always return 0. Current versions use Linux-specific syscall to query the available
entropy, and on Windows they return 0 even if they use OS-provided secure random facilities.
Similarly, libc++ only ever returns 0, even though it only uses platform-provided secure random
facilities.

The second flaw is likely exacerbated by the fact that if an implementation is using a platform-provided
random facilities, it likely cannot provide a real and meaningful entropy estimate.

1

mailto:martin.horenovsky@gmail.com


Non-goals
There are several other problems with <random>, and even std::random_device as it is currently stan-
dardized. This paper intentionally does not try to fix any of them. This is because there are other papers
that target those issues, and we should not let fixing an issue get bogged down because of a lack of
consensus on other issues.

Proposed solution
To address these issues, I propose to deprecate the entropy member function and instead add static
constexpr bool is_predictable()1 function to random_device. This function returns true if random_device
is implemented in a way that makes its output predictable, e.g. by using a PRNG and false when its
output is not predictable, e.g. when it is implemented in terms of OS-provided cryptographically secure
random number generation facilities.

The reason to deprecate entropy is that only a small niche in the Linux community thinks of entropy
in the OS providded CSRNG facilities as depletable. Combined with the fact that 2 out of the big 3
implementations do not return meaningful results on all platforms, and that the users are more interested
in simple boolean query of “will the output be unpredictable”, entropy is not useful in any way.

Even for the niche case where a user on the Linux platform cares about the estimated entropy in
/dev/urandom, the interface has a TOCTOU problem.

Proposed wording changes
class random_device {

public:
// types
using result_type = unsigned int;

// generator characteristics
static constexpr result_type min() { return numeric_limits<result_type>::min(); }
static constexpr result_type max() { return numeric_limits<result_type>::max(); }

// constructors
random_device() : random_device(implementation-defined) {}
explicit random_device(const string& token);

// generating functions
result_type operator()();

// property functions
double entropy() const noexcept;

1Possible alternative names that could be used instead: is_nonpredictable, is_deterministic, or is_nondeterministic

2



static constexpr bool is_predictable();

// no copy functions
random_device(const random_device&) = delete;
void operator=(const random_device&) = delete;

};

static constexpr bool is_predictable();

Returns: true if default-constructed random_device uses a predictable random generator, such as
Mersenne Twister. false otherwise.

Alternative approach
An alternative approach is to avoid deprecating entropy() and instead clarifying that entropy() should
only return 0 for predictable implementations, such as those that rely on a random number engine as
defined in [rand.req.eng], and implementations that use unpredictable implementations, such as using
rand_s provided by Windows, should return non-zero estimate.

Proposed wording changes

[rand.device]:

If implementation limitations prevent generating nondeterministic random numbers, the implementa-
tion may employ a random number engine as defined in [rand.req.eng].

double entropy() const noexcept;

Returns: If the implementation employs a random number engine, returns 0.0. Otherwise, returns a
non-zero entropy estimate for the random numbers returned by operator(), in the range min() to
log2(max()+1).

Goals
To sum up, this paper has two goals,

1. Provide users of random_device with a way to query whether the output is predictable or not.

2. Start a discussion on what should happen to random_device::entropy

3


	1 Introduction
	2 Motivation
	3 Non-goals
	4 Proposed solution
	4.1 Proposed wording changes

	5 Alternative approach
	5.0.1 Proposed wording changes

	6 Goals

