

Document: P2049R0

Date: 2020-01-12
Audience: SG7
Authors: Andrew Sutton

(asutton@lock3software.com)
Wyatt Childers
(wchilders@lock3software.com)

Constraint refinement
for special-cased functions

Abstract
This paper builds on P1733 (User-friendly and Evolution-friendly Reflection: A Compromise). In
particular, we propose to extend concepts to allow refinable constraints on special-cased functions. These
concepts extensions include:

● Function parameters for concepts
● Non-template concepts
● Constraints on non-template functions

Taken with P1733, this provides a general and powerful feature that extends well beyond the scope of
static reflection and metaprogramming.

Introduction
P1733 proposes to allow function constraints (as in concepts) on constant function arguments. The
purpose of this extension is to provide implementation support for a class-based reflection facility
(P0953) built on top of a weakly typed, handle-based reflection facility (P1240). The proposed feature
supports the following use:

constexpr meta::class_info c = reflexpr(some_class);

The reflexpr operator returns a meta::info object: a scalar value that designates the compiler’s
internal representation of some_class . The class_info class is initialized by the meta::info
value and exposes a meaningful interface for querying class properties. This is a standard technique for
building coherent abstractions on low-level facilities.

mailto:asutton@lock3software.com
mailto:wchilders@lock3software.com
https://wg21.link/p1733
https://wg21.link/p1733
https://wg21.link/p0953
https://wg21.link/p1240

But what if the reflection designates something other than a class? In more conventional libraries, we
might throw an exception from the constructor. However, P1733 allows these requirements to be
expressed as constraints (as in concepts):

struct class_info {
 consteval class_info(info x) requires is_class(x)
 : refl(x)
 {
 if (!is_class_type(x))
 throw runtime_error(“not a class”);
 }
};

In the example above, if c were to be initialized by something other than a class reflection, the program
would be ill-formed, with a diagnostic similar to: “ no matching constructor; is_class(x)
evaluated to false ”.

Details
P1733 extends the constraint (as in concept) mechanism to allow overloading based on the value of
function arguments. For example:

double pow(double base, int exp); // #1
double pow(double base, int exp) requires (exp == 2); // #2

// Elsewhere
double pi = 3.14;
pow(pi, 3); // calls #1
pow(pi, 2); // calls #2
int n = 2;
pow(pi, n); // calls #1

The mechanism is relatively straightforward. Function parameters initialized by constant expressions are
made available as constants during constraint satisfaction. A candidate whose constraints are not satisfied
is not viable. In the call pow(pi, 3) , only #1 is viable because exp == 3 is false. In the call
pow(pi, 2) , both #1 and #2 are viable, and #2 is more specialized. In the call pow(pi, n) , only #1
is viable because exp == 2 is not a constant expression.

Note that this feature does not support the more general notion of case-based function definitions that are
popular in some functional languages (e.g., Haskell). This is a limited approach that “carves out” special
cases for constant function arguments.

https://wg21.link/p1733
https://wg21.link/p1733

The semantics of this feature are: For each function parameter used in the trailing requires-clause ,
synthesize a new, implicit template parameter of the same type and name, and replace references to
function parameters in the original expression with their corresponding template parameter. If a function
parameter cannot be used as a template parameter (i.e., not a structural type), the program is ill-formed. 1

The “promotion” of function parameters to template parameters means we don’t need to reformulate the
rules for constraint normalization, satisfaction, or substitution in order to make this feature work.
Everything remains defined in terms of template parameters.

To be clear, synthesized template parameters do not replace their corresponding function parameters. The
scope of synthesized template parameters begins at the requires keyword and ends at the end of its
expression.

When forming the template arguments needed to satisfy the associated constraint of a declaration,
initialize each synthesized template parameter with the expression used to initialize the corresponding
function parameter. If the template parameter cannot be initialized, the constraints are not satisfied.

Extensions for concepts
The following example is given in P1733 . The most_derived down-casts an object to its most-derived
type.

template<bool = true>
consteval type_info most_derived(object o)
 requires (is_type(o.info())
 && !is_class_type(o.info())
 && !is_union_type(o.info())
 && !is_enum_type(o.info()));

template<typename = true>
consteval enum_info most_derived(object o)
 requires is_enum_type(o.info());

The functions are templated since constraints are not allowed on non-template functions. While the
constraints of functions would achieve the intended result, their authoring is a bit fragile. Any significant
extension to the type system would require “re-juggling” the constraints on (potentially many) overloads
in this set of functions in order to ensure the desired outcome.

The constraints in the example define a refinement hierarchy, albeit using exclusion instead of
strengthening predicates. The constraints on the first overload are the most general; it works for anything

1 Equivalently, synthesize a template parameter for each function parameter of structural type before parsing the
requires-clause , then discard parameters that are not used in the trailing requires-clause . If an identifier in the
requires-clause refers to a function parameter, the program is ill-formed.

https://wg21.link/p1733

that’s a type, but not a more specific kind of type. The constraints of the second overload are more
specific than those of the first--they refine the constraints of the original (all enum types are types).
Ideally, we should be able to take advantage of the functionality provided by concepts in order to define
these functions like so:

consteval type_info most_derived(object o)
 requires is_type(o.info());

consteval enum_info most_derived(object o)
 requires is_enum_type(o.info());

In other words, the is_type and is_enum_type predicates behave more like concepts than
consteval or constexpr functions. Note that we have also removed the requirement to make these
functions templates. Beyond the semantics proposed by P1733R0, this feature would require the
following extensions:

● Extend concepts so they can take function arguments.
● Potentially allow concepts to be defined as non-templates.
● Allow constraints on non-template functions.

Each extension is described in the following sections.

Function concepts
Here, we want to allow concepts to accept function arguments in addition to template arguments. The
is_type and is_enum_type concepts could be defined as:

template<typename Refl>
concept is_type(Refl x) = __meta_is_type(x);

template<typename Refl>
concept is_enum_type(Refl x) = is_type(x) && __meta_is_enum(x);

Function concepts can behave (more or less) like regular functions; they can be overloaded, they can be
called (kind of), template argument deduction works in the usual way, etc. However, the function
parameters here are interpreted as non-type template parameters, and as such, are restricted to being
structural types.

Because a function concept is a concept, its “evaluation” follows the usual rules for evaluating concepts:
it is first normalized into a logical constraint, which is then checked for satisfaction (interleaving template
substitution and constant expression evaluation). We want them to have the following behavior:

int n;

cout << is_type(n); // prints 0
cout << is_type(reflexpr(int)); // prints 1

The rules for satisfying a called function concept are similar to those for satisfying constraints involving
function parameters: the function parameters (actually template parameters) are initialized by their
arguments. If initialization fails, the constraints of the concept are not satisfied (i.e., the expression
evaluates to false). This causes the first cout statement to print 0; initialization of Refl x by the
variable n fails because n is not a constant expression.

Non-template concepts
We could write is_type and is_enum_type as non-templates. In fact, this is preferable since their
current formulation allows them to be used with undesirable function arguments (like int in the example
above). Ideally, the definitions of those predicates should be:

concept is_type(info x) = __meta_is_type(x);
concept is_enum_type(info x) = is_type(x) && __meta_is_enum_type(x);

A non-template concept should work in exactly the same ways as a template concept since their
parameters are interpreted as template parameters.

Constraints on non-template functions
For P1733 to be useful, it is essential that we allow constraints on non-template functions—even the first
example in this paper requires this feature. The concepts TS did include the ability to constrain
non-template functions, but that was removed when the TS was merged into the working paper. (Also, the
implementation didn’t really work.)

The reason for removing the feature is that our current declaration model readily makes constrained
non-template overloads ill-formed, no diagnostic required. For example:

void f() requires (VERSION == 1);
void f() requires (VERSION == 2);
void f() requires (VERSION == 3);

If VERSION == 1 , then the 3rd overload makes the program ill-formed because the constraints of the
2nd and 3rd overload are functionally equivalent but not equivalent; they have different spellings, but
always evaluate to false.

This paper allows for a limited set constrained non-template functions, specifically those whose
constraints refer to function parameters. In other words, the example above would still be rejected,
although not necessarily diagnosed. This paper should allow the following:

https://wg21.link/p1733

void f(int version) requires (version == 1);
void f(int version) requires (version == 2);
void f(int version) requires (version == 3);

No two constraints are functionally equivalent.

Conclusions
If we adopt P1733 , then we should also adopt these extensions to concepts. Combined, these provide a
general and powerful feature that extends well beyond the scope of static reflection and
metaprogramming. Although the feature in P1733 was conceived to support a tiered architecture for
standard reflection facilities, the first examples demonstrate it’s utility well outside the scope of
metaprogramming: we can provide special cases for complex functions that might not be optimizable to
the extent we can achieve with more direct approaches. The features in this paper are intended to improve
our ability to declare such special cases.

That said, these features are a far cry from generalized predicate-based dispatch (e.g., Haskell functions).
Pursuing that design goal introduces a slew of problems that should be considered separately from this
proposal.

https://wg21.link/p1733
https://wg21.link/p1733

