
Document Number: p1184r2
Date: 2020-07-10
To: SC22/WG21 SG15
Reply to: Nathan Sidwell

nathan@acm.org / nathans@fb.com

A Module Mapper
Nathan Sidwell

The modules-ts specifies no particular mapping between module names and their interface source file s,
and for both named modules and header-units to their Compiled Module Interface name. This leads to
toolchains developing their own schemes. This paper describes an interface implemented as a serial
protocol by which compilation tools may interrogate an entity encoding this mapping, or responsible
for creating said objects. This interface allows a compiler to be agnostic about the mapping, and
sharing of resources across several compilations.

1 Background
Compiling a module interface unit is expected to generate an intermediate file of no particular specified
form. This intermediate form, a CMI, is read when processing import declarations (and module
implementation units). The intent here is to speed compilation, and although the standard does not
mandate this approach, known compiler implementations are taking this direction. Static analysis tools
may do something different though.

Thus when compiling:

export module foo;

the compiler needs to determine where to write foo’s CMI. Similarly when processing:

import foo;

the compiler needs to know where foo’s CMI was placed.

More complex cases arise. In the second case, what if foo’s CMI has not yet been generated? Is that a

case that should be handled, or must we require build systems to have predetermined a dependency
graph and build it in the correct order?1

We also have header-units, which are named from the header-files from whence they come. They may
be imported:

1 Nothing here precludes a CMI being multiply built for different importers. This increases overall work, but may reduce
the need for dependency analysis. Of course each such build must produce equivalent CMIs.

p1184r2:A Module Mapper - 1 - Nathan Sidwell

import "foo.h";
import <baz.h>;

As header units export macros it is now longer to preprocess the source in isolation from reading in
CMIs. This essentially makes it difficult for the dependency graph to be accurately determined up
front, before any module compilation. Preprocessing requires reading in the macros from each legacy
import before continuing. P1857:‘Modules Dependency Discovery’ documents various heuristics can
be used to determine the dependency graph without full preprocessing.

A further issue is that #include directives may be translatated to import-declarations of the specified file
as a header-unit. Determining whether to perform this translation is complex.

Thus we reduce to three questions:

• When exporting a module, where should the CMI be placed?

• When importing a module, where should the CMI be found?

• When including a header, should it be translated to an import?

2 Experimentation
The GCC modules implementation began with a fixed mapping of module name to CMI filename, and
a search path to look for them. This answered the loading question at the cost of forcing a particular
naming scheme. When producing a CMI, the fixed mapping was used to write into the current
directory. Options were added to manipulate the search path.

When searching for a CMI failed, the compiler spawned a user-provided wrapper program. That was
tasked with making sure a repeated search would succeed (or return a failure). Options were added to
control the wrapper program.

These met initial modest needs, but failed with the first customer, Boris Kolpackov, who wanted to
have an arbitrary mapping and per-compilation control of the output file. Options were added to control
mapping files and output names.

The addition of an include translation scheme indicated the implementation was on a path to a myriad
of options, each a special case.

Conversations with Richard Smith & David Blaikie moved towards providing a distinct component in
the compiler to handle these questions. In particular having some way of finding the dependency graph
during compilation, because of the above mentioned interdependence of preprocessing and legacy
header unit compilation. Fundamentally, the questions can be too complex to be solvable by a block of
data given to the compiler before starting.

p1184r2:A Module Mapper - 2 - Nathan Sidwell

Initially a plugin was considered, but that could mean different plugins for each compiler/build system
combination. In considering how a plugin might work, a client/server architecture suggested itself.

3 Client/Server
The idea of a client-server scheme has the build system providing a server, and compilations may
interact with that as clients. The build system acts as a cache of module-name/CMI-location tuples, and
has more global visibility of the system. Compilations are simply concerned with processing a source
file.

If adopted by multiple compilers, it would provide a uniform way in which module-aware build
systems could interact with them.

A default scheme will be needed, and one is provided by a default server. Whether the defaults are
correct, or whether it would be better implementing that directly in the compiler is an open question.
Having it separated out does allow experimentation by non-compiler experts. The compiler itself is
now agnostic about mappings.

The system model is of a build system directly, or indirectly, spawning compilation jobs. Those
compilations connect to a server controlled by, or part of, the build system. The build system and
compilations already have a mechanism for bulk data transfer, with a common naming scheme (I.e. the
file system).

3.1 What it is Not
This is not a general-purpose compile server. The intent is that there is a one to one correspondence
between build invocations and servers. A server instance is live only as long as the build it serves.
Only the compilations of that particular build connect to that build’s server invocation. The means by
which that can be checked or enforced depends on the means of connection. For instance, if
connection is by anonymous pipes, there can be no other connections. But that requires the pipe file
descriptors to be propagated correctly from the build system to the compiler. Experience with
GNUMake’s jobserver shows that is brittle2

It is not designed for a hostile environment. A shared filesystem is already presumed. The build system
is invoked by the user, and therefore has (or should enforce) the access rights of that user. Obviously, if
the build system runs as a different user, there is already a privilege escalation possibility, should it
contain bugs. If connection is via named unix local sockets (AF_UNIX), the file system can enforce
connection rights. Of course that restricts connections to the local system. A distributing build system
will need something different, for instance IP sockets. Clearly these should not be exposed to the
external internet, and connection origins should be validated. The port number is not fixed, and could

2 GNUMake needs to know the rule being invoked is subjob-like, requiring users to prefix a ‘+’, if heuristics fail. If a sub
job itself is a wrapper, it needs to ensure those file descriptors are passed on to the process(es) it invokes.

p1184r2:A Module Mapper - 3 - Nathan Sidwell

be build-specific. As described in Section 4.6, compilers may identify themselves via an identifier
generated in an implementation-specific manner. It is not a cryptographically strong cookie. Merely a
mechanism by which a build system can identify the target producing possibly new dependencies.

It is not a bulk transfer mechanism. As mentioned above, the compilations of a particular build will
already have a bulk transfer mechanism to (a) get the sources to compile and (b) deliver the compiled
object files to the linker. In common with header files, multiple compilations can use the same CMI
file for importing. Further at least 2 module implementations use mmap to read the CMI, thus sharing
physical memory pages, for concurrent compilations on a single system. Were CMIs delivered via this
protocol, there would be a per-import bandwidth requirement, and per-import memory use.

4 The Protocol
The protocol is a simple text-based query/response scheme. It is intended for use on systems sharing, or
duplicating, a file system, and large objects (such as source or CMIs) are accessed via that. Connections
are expected to be local, there is no encryption layer, or DOS defense. In order to reduce round trips, a
batching mechanism is employed.

The compiler initiates connection and queries, the server responds. Every request has a response. It is
line based and consists of whitespace-separated words. Messages consisting of no words are ignored.

Protocol completeness is not claimed. The version described in this r2 paper is incompatible with that
of the r1 paper, but fortunately the initial handshake is sufficiently similar to notice the incompatibility
and provide a diagnostic.

4.1 Environment
The mechanism by which the compiler connects to the build system is not specified.

As mentioned in Section 3, it is intended that the build system launches compilations, and can thereby
inform them of how to connect. Also that they have a common view of a shared filesystem, and the
build system knows the compiler’s working directory.

As the server and the client share a file system (or a mechanism to transfer bulk data using common
names), it is presumed that they share a common pathname convention. What that convention is, is
currently unspecified. While URIs provide a well-defined resource naming scheme, they are too
capable for the needs here, and might encourage cross-site interaction going against the restrictions
outlined in Section 3.1.

4.2 Encoding Layer
The encoding layer has seen the greatest change in this version. The ability to use tools such as netcat
to probe an implementation remains.

p1184r2:A Module Mapper - 4 - Nathan Sidwell

Each message consists of a line of Unicode text encoded as UTF83 octets, ending with a newline (0xa).
The newline may be preceded by a continuation marker (see below). The message itself consists of an
arbitrary number of words, separated by one or more space (0x20) or tab (0x9) characters. Words need
not be quoted, if they only contain:

• Upper or lower case ASCII letters [0x41-05a] or [0x61-0x7a]

• Digits [0x30-0x39]

• Plus (0x2b)

• Minus (0x2d)

• Underbar (0x5f)

• Percent (0x25)

• Slash (0x2f)

• Dot (0x2e)

Thus many pathnames do not require quoting. Words containing characters in the ranges [0x0-0x20]
and above 0x7e must be quoted. Other words should be quoted.

Quoting is delimited by tick (0x27) characters. Within a quoted word, backslash (0x5c) is used as an
escape mechanism. Within a quoted word, characters [0x-0x1f], 0x27, 0x5c & 0x7f must be escaped.
Other characters may be escaped, but need not be. The following escapes are available:

• \’ (0x5c,0x27) a tick (0x27)

• \\ (0x5c,0x5c) a backslash (0x5c)

• \n (0x5c,0x6e) a new line (0xa)

• \t (0x5c,0x64) a tab (0x9)

• \<hex>{1,2} (0x5c,[0x30-0x39,0x61-0x66]{1,2} hex encoding

Any octet may be encoded by the hex encoding, which explicitly uses lower-case characters, and may
be one or two hexadecimal digits. The shorter form may be used only when one digit is sufficient, and
the next (unescaped) character could not be mistaken for one. Unicode characters that are encoded in
multiple octets do not need escaping, and presumed correct. Thus any octets in the range [0x80-0xff]
are simply passed in quoted words. Escaping is at the octet level, not the unicode character level.

The \n, \t, \\ and \’ encodings are mnemonically helpful to human readers of messages. Note that these
encodings need not be used, the more generic hex encoding may be used in place.

3 See below for non-utf8 filesystems.

p1184r2:A Module Mapper - 5 - Nathan Sidwell

Quoting behaviour may be initiated and terminated mid-word, there is no requirement that it
encompass a whole word.

4.2.1 Batching

Messages may be batched into a single block. Continuation is indicated by ending a message with an
unquoted space, semicolon (0x20,0x3b) immediately before the newline character. This indicates
another message follows in the block. In this manner the message buffering layer does not need to lex
or parse block contents to determine whether additional data should be waited for. If the last character
received was a newline, and it wasn’t immediately preceded by a semicolon, more characters are to be
expected.

The responses to a batched set of requests must also be batched. A batch of one message is equivalent
to an unbatched message.

In GCC’s case, all top-level named-module imports are deferred until the end of preprocessing, and
requested as a block at that point. C++ parsing commences once that block request has been responded
to.4 The compiler’s memory footprint will essentially be that of a preprocessor when waiting, as no
ASTs of the program will have been constructed, and nothing more than macro tables of imported
header-units will have been read.

4.3 Pathnames
As mentioned above, the build system is in control of the compilations, and will have provided them
with at least the source pathname to compile. Commonly the build system and compilation will share a
common filesystem, and the former will know the latter’s working directory. Thus pathnames are
naturally meaningfully transferred from the server to the client.

Therefore pathames specify location in the compiler’s view of the filesystem.

In a heterogeneous distributed build, the build system will still have knowledge of the compiler’s
filesystem but may need to apply extra-protocol pathname translation.

4.3.1 Non-UTF8 Filesystems

Some filesystems use a different encoding for their pathnames, (eg UTF16le). It would be awkward to
reencode such pathnames to and from UTF8. Fortunately, in this version it is known what words of a
message are filenames. The encoding layer is sufficient to pass through other character encodings, as it
does not presume the UTF8 encoding for characters outside the ASCII set is valid UTF8 – the right
escapes will be inserted to ensure end-to-end fidelity. Thus pathnames could use the system’s character
encoding (as mentioned in Section 4.1, they have a common pathnaming scheme).

4 As you will infer, GCC preprocesses the entire token stream before C++ parsing.

p1184r2:A Module Mapper - 6 - Nathan Sidwell

There is also the complexity of header-unit names. These are derived from the pathname of the header-
file they derive from, and hence the filesystem’s character encoding.

I am insufficiently versed in such subtlety of character encodings to suggest anything more than
‘experimentation needed’.

4.4 Module Names
There are two kinds of module names – those for named modules and those for header-units. These are
distinguished by ensuring the latter unambiguously look like pathnames. Further, header-unit names
must be resolved by the compiler to the header-file they correspond to.5

Header-names are either absolute pathnames (using the local system convention), or the are forced to
be relative paths by ensuring they begin with ‘./’ (or whatever the local system convention is for the
current directory). Thus the named module ‘bob’ will have a module name of ‘bob’, but the header unit
“bob” will have the name ‘./bob’, if it was found in the current directory. If it was found in the foo
subdirectory, its name is still prefixed with ‘./’ as ‘./foo/bob’.

4.5 Errors
If a request is malformed, or fails for some reason an error response is given. The format is

ERROR $msg

The $msg is a human readable word. Error codes are not used, as that proved awkward. Generally
errors result in catastrophic failure to compile, and $msg can be presented to the user .

It is unspecified whether such message text has been localized at the server side, or should be localized
by the compiler.6

4.6 Handshake
The first request is a handshake:

HELLO $ver $agent [$ident]

The protocol version number, $ver, is currently 1. The $agent identifies the compiler. I expect different
compilers to require and produce incompatible CMIs. The final item, $ident, is optional and intended to
identify the particular compilation. The mechanism by which the compiler knows what $ident to
provide is unspecified, however it is recommended that the source file name be used as a default.

5 The “” or <> quoting of the header-unit has been resolved at this point. To do otherwise would require the compiler and
server have a common include path, and, for “”, or the common include_next extension require the indication of the file
containing the import and/or its location within the include path.

6 Experimentation with error codes showed them to be more awkward than useful. Perhaps an error code could be added
as an optional component of the error response.

p1184r2:A Module Mapper - 7 - Nathan Sidwell

The response is either:

HELLO $ver $agent

to indicate successful handshake. Again $ver is currently 1. The $agent word identifies the build system
to the compiler. If connection fails the response is an ERROR.

It is currently unspecified how mismatched version numbers should be handled. A likely behaviour is
that communication is restricted to the lowest version’s set.

A successful handshake places the system in the connected state, where other requests can be made.
There is no requirement for the handshake to be in a separate block to other requests – although, if the
handshake fails those subsequent requests will each deliver an ERROR response.

A common use case is to batch the handshake with a module repository query:

HELLO 1 GCC quux.cc ;
MODULE-REPO

and expecting a response similar to:

HELLO 1 gcc ;
MODULE-REPO gcm.cache

4.7 Module Repository
The concept of a repository of module CMIs is supported. All CMI pathnames are relative to this
repository. The compiler issues a:

MODULE-REPO

request. The response will be:

MODULE-REPO [$repo]

where $repo is the optional path to the repository.

The default repository is ‘.’, the compiler’s working directory.

4.8 CMI Mappings
Two queries determine the name of a CMI given a module name:

MODULE-IMPORT $module
MODULE-EXPORT $module

The specified module needs to be imported, or is being exported. A module implementation unit issues
a MODULE-IMPORT for the module. The response is either:

p1184r2:A Module Mapper - 8 - Nathan Sidwell

MODULE-CMI $cmi

or an ERROR.

When exporting a module, the completion of the export is via:

MODULE-DONE

which expects an ‘OK’ response. Note that the compilation may not have completed the object-file
generation of the interface unit. This permits a build system to launch compilations depending on this
module’s CMI before the interface itself has completed compilation. If compilation of the module
interface fails, the compiler need not explicitly inform the build system. It can simply exit (with some
kind of error code).

Clearly, these requests implicitly give the server dependency information between the source being
compiled and the module being imported or exported.

4.9 Include Translation
When processing an include directive, it is necessary to know whether to textually include the header
or translate to an import declaration. The query is:

MODULE-INCLUDE $header

where $header is the to-be included header. The response is one of:

INCLUDE-TEXT

to textually include it,

INCLUDE-IMPORT

to import as a module, or:

MODULE-CMI $cmi

to explicitly indicate the $cmi to import. If the INCLUDE-IMPORT response is received, a MODULE-

IMPORT request will need to be issued to determine the CMI name.

As mentioned in Section 4.4 the header name has already been resolved to a file, using the compiler’s
include path. If the include path contains absolute pathnames, the queried header names could be
absolute.

p1184r2:A Module Mapper - 9 - Nathan Sidwell

4.10 Sample Implementation
This is currently implemented as a C++11 library, libcody.7 This is used in GCC, replacing the horrible
hack I previously had. In addition to supporting inter-process communication, libcody provides an in-
process mechanism, and that is now GCC’s default (rather than fork a subprocess).

GCC continues to provide a default server program, but using libcody. It is no longer spawned by
default.

The library provides connection helpers, but does not specify any particular syntax for that. The options
are documented in the GCC manual, but are subject to change due to the experimental nature of this
development.

The -fmodule-mapper=$val option controls the mapper, allowing it to be invoked in one of the following
ways:

• a file of tuples, or

• a pair of file descriptors (or a single bi-directional file descriptor)

• a local domain unix socket,8 or

• an ipv6 domain socket & port, or

• a program to spawn using stdin/stdout communication.

The tuple file is the least flexible scheme, requiring all potential questions to be answered before
starting compilations.

A ident may be provided, which is used when initiating connection, and allows the build server to
distinguish between compilations. It defaults to the source file name.

If no -fmodule-mapper option is given, the environment variable CXX_MODULE_MAPPER is queried for a
value that, if present, matches -fmodule-mapper’s argument form.

4.11 Future Directions
This protocol has been developed on a compilation system. Static analysis systems may want source
rather than CMI locations. Experimentation might suggest such a use should be by new request kinds.

It may be profitable for the server to resolve include names, rather than have each compilation discover
that anew. The (often negative) file system look ups within a complex build can accumulate to a
noticeable extent.

7 github.com/urnathan/libcody
8 Other OS’s could provide their own variant of local sockets.

p1184r2:A Module Mapper - 10 - Nathan Sidwell

4.12 LTO
Link Time Optimization is another situation where by a compiler would like to communicate with a
build system. LTO is initiated at the linker stage and often performs a pre-link, followed by a set of
concurrent compilations. Both Clang’s thin-LTO, and GCC’s LTO operate in this manner. Those
concurrent compilations are jobs the build system could manage, as it is aware of the overall level of
concurrency desired.

In GCC’s case, it currently performs this step by writing a Makefile and then spawning make with a
user-specified concurrency level. It does attempt to use GNUMake’s jobserver protocol, but that is
only available if the original invoking make recognized the link step as possibly needing it. Make’s
only knows that if (a) make is explicitly spawned by that build rule, or (b) the build rule is prefixed by
‘+’. Users often forget the ‘+’.

A Google Summer of Code student is working on this issue.

4.13 Make
I have not updated the GNU Make proof-of-concept I described in p1602 ‘Make Me A Module’.

5 Revision History
R0 Presented San Diego’18

R1 Amended some terms to avoid unintended assumptions.

R2 Redesign for more general application.

p1184r2:A Module Mapper - 11 - Nathan Sidwell

	1 Background
	2 Experimentation
	3 Client/Server
	3.1 What it is Not

	4 The Protocol
	4.1 Environment
	4.2 Encoding Layer
	4.2.1 Batching

	4.3 Pathnames
	4.3.1 Non-UTF8 Filesystems

	4.4 Module Names
	4.5 Errors
	4.6 Handshake
	4.7 Module Repository
	4.8 CMI Mappings
	4.9 Include Translation
	4.10 Sample Implementation
	4.11 Future Directions
	4.12 LTO
	4.13 Make

	5 Revision History

