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Revision History

This document supersedes P0876R9.

Changes since P0876R9

• Removed resume_from_any_thread(), resume_from_any_thread_with(), cancel_from_any_thread()
and can_resume_from_this_thread(), along with stated support for resuming a suspended fiber on some
thread other than the one on which it was launched.

In Belfast, EWG came down strongly against cross-thread fiber resumption. The most emphatic objection was that for a
function referencing TLS, multiple compilers cache TLS pointers on the function’s stack frame. Resuming a fiber containing
that stack frame on some other thread would cause problems. In the best case, the resumed function would merely
reference TLS belonging to the wrong thread – but at some point the original thread will terminate, its TLS will be
destroyed, and the cached pointers will be left dangling.

With std::fiber_context, any opaque function call might possibly suspend – but invalidating cached TLS pointers
across every opaque function call is deemed unacceptable overhead.
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Changes since P0876R8

• Reinstated cancellation function constructor argument.

• Added cancel() and cancel_from_any_thread() member functions.

• Re-removed std::unwind_fiber().

SG1 directed P0876R9 to conform to the Cologne 2019 recommendations, with any other changes proposed in a separate
paper.

Changes since D0876R7

• Cancellation function removed from std::fiber_context constructor.

• std::unwind_fiber() re-added, with implementation-defined behavior.

• Added elaboration of filament example to bind cancellation function.

P0876R8 diverged from the recommendations of the second SG1 round in Cologne 2019. It did not introduce cancel() or
cancel_from_any_thread() member functions. In fact it removed the cancellation-function constructor argument.

std::fiber_context is intended as the lowest-level stackful context-switching API. Binding a cancellation-function on
the fiber stack is a flourish rather than a necessity. It adds overhead in both space (on the fiber stack) and time (to traverse
the stack to retrieve the cancellation-function). For this API, it should suffice to pass the desired cancellation-function to
resume_with(). If it is important to associate a cancellation-function with a particular fiber earlier in the lifespan of the
fiber, a struct serves.

A more compelling reason to avoid constructing an explicit fiber with a cancellation-function is that no implicit fiber has any
such cancellation-function – and the consuming application cannot tell, a priori, whether a given std::fiber_context
instance represents an explicit or an implicit fiber. If *this represents an implicit fiber, what should the proposed
cancel() member function do?

Passing a specific cancellation-function to resume_with() avoids that problem.

P0876R8 follows SG1 recommendation in making it Undefined Behavior to destroy (or assign to) a non-empty std::fiber_context
instance.

std::unwind_fiber() was reintroduced with implementation-defined behavior to allow fiber cleanup leveraging
implementation internals. Its use was entirely optional (and auditable).

Changes since P0876R6

• Implicit stack unwinding (by non-C++ exception) removed.

• std::unwind_fiber() removed.

• Cancellation function added to std::fiber_context constructor.

In Cologne 2019, SG1 took the position that:

• The fiber_context facility is not the only C++ feature that requires “special” unwinding (special function exit
path).

• Such functionality should be decoupled from std::fiber_context. It requires its own proposal that follows its
own course through WG21 process.

• Depending on this (yet to be written) proposal would unduly delay the fiber_context facility.

• For now, the fiber_context facility should adopt a “less is more” approach, removing promises about implicit
unwinding, placing the burden on the consumer of the facility instead.

• This leaves the way open for fiber_context to integrate with a new, improved unwind facility when such
becomes available.

The idea of making std::fiber_context’s constructor accept a cancellation function was suggested to permit consumer
opt-in to P0876R5 functionality where permissible, or convey to the fiber in question by any suitable means the need to
clean up and terminate.
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Requiring the cancellation function is partly because it remains unclear what the default should be. This could be one of
the questions to be answered by a TS. Moreover, the absence of a default permits specifying later that the default engages
the new, improved unwind facility.

Changes since P0876R5

• std::unwind_exception removed.

• fiber_context::can_resume_from_any_thread() renamed to can_resume_from_this_thread().

• fiber_context::valid() renamed to empty() with inverted sense.

• Material has been added concerning the top-level wrapper logic governing each fiber.

std::unwind_exception was removed in response to deep discussions in Kona 2019 of the surprisingly numerous
problems surfaced by using an ordinary C++ exception for that purpose.

Problems resolved by discarding std::unwind_exception:

• When unwinding a fiber stack, it is essential to know the subsequent fiber to resume. std::unwind_exception
therefore bound a std::fiber_context. std::fiber_context is move-only. But C++ exceptions must be
copyable.

• It was possible to catch and discard std::unwind_exception, with problematic consequences for its bound
std::fiber_context.

• Similarly, it was possible to catch std::unwind_exception but not rethrow it.

• If we attempted to address the problem above by introducing a std::unwind_exception operation to extract
the bound std::fiber_context, it became possible to rethrow the exception with an empty (moved-from)
std::fiber_context instance.

• Throwing a C++ exception during C++ exception unwinding terminates the program. It was possible for an
exception implementation based on thread_local to become confused by exceptions on different fibers on the
same thread.

• It was possible to capture std::unwind_exception with std::exception_ptr and migrate it to a different
fiber – or a different thread.

abstract

This paper addresses concerns, questions and suggestions from the past meetings. The proposed API supersedes the
former proposals N3985,8 P0099R1,10 P0534R311 and P0876R9.19

Because of name clashes with coroutine from coroutine TS, execution context from executor proposals and continuation used
in the context of future::then(), the committee has indicated that fiber is preferable. However, given the foundational,
low-level nature of this proposal, we choose fiber_context, leaving the term fiber for a higher-level facility built on top of this
one.

The minimal API enables stackful context switching without the need for a scheduler. The API is suitable to act as building-
block for high-level constructs such as stackful coroutines as well as cooperative multitasking (aka user-land/green threads
that incorporate a scheduling facility).

Informally within this proposal, the term fiber is used to denote the lightweight thread of execution launched and
represented by the first-class object std::fiber_context.

code common to examples in this paper

Destroying a non-empty std::fiber_context instance invokes Undefined Behavior – you must first call cancel()
(see termination). To simplify code examples in this paper, we introduce an autocancel wrapper class that tracks the
sequence of std::fiber_context instances representing a particular fiber. When an autocancel instance is destroyed,
it calls cancel() on the stored std::fiber_context.
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// autocancel is a wrapper class that, when destroyed, implicitly cancels its
// stored fiber_context. It uses the tactic seen in the example ’filament’
// class to continually update the fiber_context representing the fiber of
// interest. (See "returning synthesized std::fiber_context instance from
// resume()")
class autocancel{
private:

std::fiber_context f_;

public:
autocancel() = default;
autocancel(std::fiber_context&& f):

f_{std::move(f)}
{}

~autocancel() {
// For purposes of code examples, assume that cancel() always
// returns an empty fiber_context instance, which is safe to
// discard.
std::move(f_).cancel();

}

// for initial entry from a plain fiber rather than an autocancel instance
void resume(){

std::move(f_).resume();
}

void resume( autocancel& ac){
std::move(ac.f_).resume_with([this](std::fiber_context&& f)->std::fiber_context{

f_=std::move(f);
return {};

});
}

};

The std::fiber_context constructor accepts an entry-function and a cancellation-function (see fiber_context() noex-
cept). Many of the examples in this paper are coded so that every explicit fiber terminates by returning a non-empty
std::fiber_context instance from its entry-function. In such examples, cancel() never need be called. We pass a
trivial assert_on_cancel() function as shown:

// assert_on_cancel() is a cancellation function for use when you’re quite
// sure that no one will call cancel(). Therefore, code must preserve every
// fiber_context instance representing this fiber. The fiber in question must
// voluntarily return from its top-level function. Accidentally destroying any
// fiber_context representing this fiber is a programming error.
std::fiber_context assert_on_cancel(std::fiber_context&&) {

assert(false);
return {};

}

When assert_on_cancel is passed to a std::fiber_context constructor as its cancellation-function, if someone
were to call cancel() on a std::fiber_context instance representing that fiber, assert_on_cancel() would fail
its assert().

Sometimes it is desirable to abandon a fiber without letting it run to completion. Consider an infinite generator. For
examples in which we abandon a fiber, assume a launch() factory function that provides both an entry-function wrapper
and a cancellation-function, as shown here:

// unwind_exception is an exception used internally by launch() to unwind the
// stack of a suspended fiber when the referencing fiber_context instance is
// destroyed.
class unwind_exception: public std::runtime_error {
public:
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unwind_exception(std::fiber_context&& previous):
std::runtime_error("unwinding std::fiber_context"),
previous_(std::make_shared<std::fiber_context>(std::move(previous))) {}

std::shared_ptr<std::fiber_context> get_previous() const { return previous_; }

private:
// Directly storing fiber_context would make unwind_exception move-only.
// Instead, store a shared_ptr so unwind_exception remains copyable.
std::shared_ptr<std::fiber_context> previous_;

};

// launch() is a factory function that returns an autocancel representing a
// new fiber that will run the passed entry_function. It implicitly provides a
// top-level wrapper and a cancellation-function. If the autocancel
// representing this new fiber is eventually destroyed, ~autocancel() will
// call this cancellation-function, which will throw unwind_exception. The
// top-level wrapper will catch it and return the bound fiber_context, thereby
// resuming the fiber that called ~autocancel().
template <typename Fn>
auto launch(Fn&& entry_function) {

return autocancel{std::fiber_context(
// entry-function passed to fiber_context constructor binds
// entry_function, calls it within try/catch, catches
// unwind_exception, extracts its shared_ptr<fiber_context>,
// dereferences it and returns that fiber_context.
[entry=std::move(entry_function)]
(std::fiber_context&& previous) {

try {
return entry(std::move(previous));

}
catch (const unwind_exception& unwind) {

return std::move(*unwind.get_previous());
}

},
// cancellation-function passed to fiber_context constructor
// throws unwind_exception, binding passed fiber_context instance.
[](std::fiber_context&& previous)->std::fiber_context {

throw unwind_exception{std::move(previous)};
return {};

})};
}

When a fiber is constructed by calling launch(), if the autocancel instance representing that fiber is destroyed:

• ~autocancel() calls fiber_context::cancel() on the instance representing that fiber

• cancel() effectively calls resume_with(), passing the cancellation-function provided by launch()

• resume_with() switches context to the subject fiber, suspending the cancel() call

• the cancellation-function is passed a std::fiber_context instance representing the fiber on which cancel() is
suspended

• that cancellation-function constructs unwind_exception, passing the synthesized std::fiber_context in-
stance

• unwind_exception’s constructor move-constructs a heap std::fiber_context instance from the passed
std::fiber_context instance

• unwind_exception stores a std::shared_ptr to that new heap std::fiber_context instance

• the cancellation-function throws the new unwind_exception

• the fiber stack is unwound according to normal C++ semantics
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• the top-level wrapper provided by launch() catches the unwind_exception

• the top-level wrapper extracts the shared_ptr, dereferences it and returns the bound std::fiber_context

• which terminates the fiber represented by the autocancel instance being destroyed

• and resumes the fiber calling cancel().

A cancellation-function need not throw an exception – it can instead, for instance, change the state of an object observed by
code running on the subject fiber. Our examples use launch(), which throws unwind_exception, so as not to clutter
the example code.

control transfer mechanism

According to the literature,7 coroutine-like control-transfer operations can be distinguished into the concepts of symmetric
and asymmetric operations.

symmetric fiber A symmetric fiber provides a single control-transfer operation. This single operation requires that the
control is passed explicitly between the fibers.

f1f1.resume() f2 f3 f4
f2.resume() f3.resume() f4.resume()

f1.resume()

1 fiber_context* pf1;
2 fiber_context f4{[&pf1]{
3 pf1->resume();
4 }, assert_on_cancel};
5 fiber_context f3{[&f4]{
6 f4.resume();
7 }, assert_on_cancel};
8 fiber_context f2{[&f3]{
9 f3.resume();

10 }, assert_on_cancel};
11 fiber_context f1{[&f2]{
12 f2.resume();
13 }, assert_on_cancel};
14 pf1=&f1;
15 f1.resume();

In the pseudo-code example above, a chain of fibers is created.

Control is transferred to fiber f1 at line 15 and the lambda passed to constructor of f1 is entered. Control is transferred
from fiber f1 to f2 at line 12 and from f2 to f3 (line 9) and so on. Fiber f4 itself transfers control directly back to fiber f1
at line 3.

asymmetric fiber Two control-transfer operations are part of asymmetric fiber’s interface: one operation for resuming
(resume()) and one for suspending (suspend()) the fiber. The suspending operation returns control back to the calling
fiber.

f1f1.resume() f2 f3 f4

f2.resume()

self::suspend()

f3.resume()

self::suspend()

f4.resume()

self::suspend()

1 // hypothetical API
2 fiber_context f4{[]{
3 self::suspend();
4 }};
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5 fiber_context f3{[&f4]{
6 f4.resume();
7 self::suspend();
8 }};
9 fiber_context f2{[&f3]{

10 f3.resume();
11 self::suspend();
12 }};
13 fiber_context f1{[&f2]{
14 f2.resume();
15 self::suspend();
16 }};
17 f1.resume();

In the pseudo code above execution control is transferred to fiber f1 at line 16. Fiber f1 resumes fiber f2 at line 13 and so
on. At line 2 fiber f4 calls its suspend operation self::suspend(). Fiber f4 is suspended and f3 resumed. Inside the
lambda, f3 returns from f4.resume() and calls self::suspend() (line 6). Fiber f3 gets suspended while f2 will be
resumed and so on ...

The asymmetric version needs N-1 more fiber switches than the variant using symmetric fibers.

While asymmetric fibers establish a caller-callee relationship (strongly coupled), symmetric fibers operate as siblings
(loosely coupled).

Symmetric fibers represent independent units of execution, making symmetric fibers a suitable mechanism for concurrent
programming. Additionally, constructs that produce sequences of values (generators) are easily constructed out of two
symmetric fibers (one represents the caller, the other the callee).

Asymmetric fibers incorporate additional fiber switches as shown in the pseudo code above. It is obvious that for a broad
range of use cases, asymmetric fibers are less efficient than their symmetric counterparts.

Additionally, the calling fiber must be kept alive until the called fiber terminates. Otherwise the call of suspend() will be
undefined behaviour (where to transfer execution control to?).

Symmetric fibers are more efficient, have fewer restrictions (no caller-callee relationship) and can be used to create
a wider set of applications (generators, cooperative multitasking, backtracking ...).

std::fiber_context as a first-class object

Because the symmetric control-transfer operation requires explicitly passing control between fibers, fibers must be
expressed as first-class objects.

Fibers exposed as first-class objects can be passed to and returned from functions, assigned to variables or stored into
containers. With fibers as first-class objects, a program can explicitly control the flow of execution by suspending and
resuming fibers, enabling control to pass into a function at exactly the point where it previously suspended.

Symmetric control-transfer operations require fibers to be first-class objects. First-class objects can be returned from
functions, assigned to variables or stored into containers.

encapsulating the stack

Each fiber is associated with a stack and is responsible for managing the lifespan of its stack (allocation at construction,
deallocation when fiber terminates). The RAII-pattern∗ should apply.

Copying a std::fiber_context must not be permitted!

If a std::fiber_context were copyable, then its stack with all the objects allocated on it must be copied too. That
presents two implementation choices.

∗resource acquisition is initialisation
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• One approach would be to capture sufficient metadata to permit object-by-object copying of stack contents. That
would require dramatically more runtime information than is presently available – and would take considerably
more overhead than a coder might expect. Naturally, any one move-only object on the stack would prohibit copying
the entire stack.

• The other approach would be a bytewise copy of the memory occupied by the stack. That would force undefined
behaviour if any stack objects were RAII-classes (managing a resource via RAII pattern). When the first of the fiber
copies terminates (unwinds its stack), the RAII class destructors will release their managed resources. When the
second copy terminates, the same destructors will try to doubly-release the same resources, leading to undefined
behavior.

A fiber API must:

• encapsulate the stack

• manage lifespan of an explicitly-allocated stack: the stack gets deallocated when std::fiber_context goes
out of scope

• prevent accidentally copying the stack

Class std::fiber_context must be move-only.

invalidation at resumption

The framework must prevent the resumption of an already running or terminated (computation has finished) fiber.

Resuming an already running fiber will cause overwriting and corrupting the stack frames (note, the stack is not copyable).
Resuming a terminated fiber will cause undefined behaviour because the stack might already be unwound (objects
allocated on the stack were destroyed or the memory used as stack was already deallocated).

As a consequence each call of resume() will empty the std::fiber_context instance.

Whether or not a std::fiber_context is empty can be tested with member function operator bool().

To make this more explicit, functions resume(), resume_with(), resume_from_any_thread() and
resume_from_any_thread_with() are rvalue-reference qualified.

The essential points:

• regardless of the number of std::fiber_context declarations, exactly one std::fiber_context instance
represents each suspended fiber

• no std::fiber_context instance represents the currently-running fiber

Section solution: avoiding non-const global variables and undefined behaviour describes how an instance of
std::fiber_context is synthesized from the active fiber that suspends.

A fiber API must:

• prevent accidentally resuming a running fiber

• prevent accidentally resuming a terminated fiber

• resume(), resume_with(), resume_from_any_thread() and resume_from_any_thread_with() are
rvalue-reference qualified

problem: avoiding non-const global variables and undefined behaviour

According to C++ core guidelines,20 non-const global variables should be avoided: they hide dependencies and make the
dependencies subject to unpredictable changes.

Global variables can be changed by assigning them indirectly using a pointer or by a function call. As a consequence, the
compiler can’t cache the value of a global variable in a register, degrading performance (unnecessary loads and stores to
global memory especially in performance critical loops).

Accessing a register is one to three orders of magnitude faster than accessing memory (depending on whether the cache
line is in cache and not invalidated by another core; and depending on whether the page is in the TLB).
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The order of initialisation (and thus destruction) of static global variables is not defined, introducing additional problems
with static global variables.

A library designed to be used as building block by other higher-level frameworks should avoid introducing global
variables. If this API were specified in terms of internal global variables, no higher level layer could undo that: it
would be stuck with the global variables.

switch back to main() by returning Switching back to main() by returning from the fiber function has two
drawbacks: it requires an internal global variable pointing to the suspended main() and restricts the valid use cases.

int main() {
fiber_context f{[]{

...
// switch to ‘main()‘ only by returning

}};
f.resume(); // resume ‘f‘
return 0;

}

For instance the generator pattern is impossible because the only way for a fiber to transfer execution control back to
main() is to terminate. But this means that no way exists to transfer data (sequence of values) back and forth between a
fiber and main().

Switching to main() only by returning is impractical because it limits the applicability of fibers and requires an
internal global variable pointing to main().

static member function returns active std::fiber_context P0099R09 introduced a static member function
(execution_context::current()) that returned an instance of the active fiber. This allows passing the active fiber m
(for instance representing main()) into the fiber l via lambda capture. This mechanism enables switching back and forth
between the fiber and main(), enabling a rich set of applications (for instance generators).

int main(){
int a;
fiber_context m=fiber_context::current(); // get active fiber
fiber_context f{[&]{

a=0;
int b=1;
for(;;){

m=m.resume(); // switch to ‘main()‘
int next=a+b;
a=b;
b=next;

}
}};
for(int j=0; j<10; ++j) {

f=f.resume(); // resume ‘f‘
std::cout << a << " ";

}
return 0;

}

But this solution requires an internal global variable pointing to the active fiber and some kind of reference count-
ing. Reference counting is needed because fiber_context::current() necessarily requires multiple instances of
std::fiber_context for the active fiber. Only when the last reference goes out of scope can the fiber be destroyed and
its stack deallocated.

fiber_context f1=fiber_context::current();
fiber_context f2=fiber_context::current();
assert(f1==f2); // f1 and f2 point to the same (active) fiber
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Additionally a static member function returning an instance of the active fiber would violate the protection requirements
of sections encapsulating the stack and invalidation at resumption. For instance you could accidentally attempt to resume
the active fiber by invoking resume().

fiber_context m=fiber_context::current();
m.resume(); // tries to resume active fiber == UB

A static member function returning the active fiber requires a reference counted global variable and does not prevent
accidentally attempting to resume the active fiber.

solution: avoiding non-const global variables and undefined behaviour

The avoid non-const global variables guideline has an important impact on the design of the std::fiber_context
API!

synthesizing the suspended fiber The problem of global variables or the need for a static member function
returning the active fiber can be avoided by synthesizing the suspended fiber and passing it into the resumed fiber (as
parameter when the fiber is first started, or returned from resume()).

1 void foo(){
2 fiber_context f{[](fiber_context&& m){
3 m=std::move(m).resume(); // switch to ‘foo()‘
4 m=std::move(m).resume(); // switch to ‘foo()‘
5 ...
6 }, assert_on_cancel};
7 f=std::move(f).resume(); // start ‘f‘
8 f=std::move(f).resume(); // resume ‘f‘
9 ...

10 }

In the pseudo-code above the fiber f is started by invoking its member function resume() at line 7. This operation
suspends foo, empties instance f and synthesizes a new std::fiber_context m that is passed as parameter to the
lambda of f (line 2).

Invoking m.resume() (line 3) suspends the lambda, empties m and synthesizes a std::fiber_context that is returned
by f.resume() at line 7. The synthesized std::fiber_context is assigned to f. Instance f now represents the
suspended fiber running the lambda (suspended at line 3). Control is transferred from line 3 (lambda) to line 7 (foo()).

Call f.resume() at line 8 empties f and suspends foo() again. A std::fiber_context representing the suspended
foo() is synthesized, returned from m.resume() and assigned to m at line 3. Control is transferred back to the lambda
and instance m represents the suspended foo().

Function foo() is resumed at line 4 by executing m.resume() so that control returns at line 8 and so on ...

Class symmetric_coroutine<>::yield_type from N39858 is not equivalent to the synthesized std::fiber_context.

symmetric_coroutine<>::yield_type does not represent the suspended context, instead it is a special representa-
tion of the same coroutine. Thus main() or the current thread’s entry-function can not be represented by yield_type
(see next section representing main() and thread’s entry-function as fiber).

Because symmetric_coroutine<>::yield_type() yields back to the starting point, i.e. invocation of
symmetric_coroutine<>::call_type::operator()(), both instances (call_type as well as yield_type) must
be preserved. Additionally the caller must be kept alive until the called coroutine terminates or UB happens at resumption.

This API is specified in terms of passing the suspended std::fiber_context. A higher level layer can hide that
by using private variables.
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representing main() and thread’s entry-function as fiber As shown in the previous section a synthesized
instance of std::fiber_context is passed into the resumed fiber.

int main(){
fiber_context f{[](fiber_context&& m){

m=std::move(m).resume(); // switch to ‘main()‘
...

}, assert_on_cancel};
f=std::move(f).resume(); // resume ‘f‘
...
return 0;

}

The mechanism presented in this proposal describes switching between stacks: each fiber has its own stack. The stacks of
main() and explicitly-launched threads are not excluded; these can be used as targets too.

Thus every program can be considered to consist of fibers – some created by the OS (main() stack; each thread’s
initial stack) and some created explicitly by the code.

This is a nice feature because it allows (the stacks of) main() and each thread’s entry-function to be represented as fibers.
A std::fiber_context representing main() or a thread’s entry-function can be handled like an explicitly created
std::fiber_context: it can passed to and returned from functions or stored in a container.

In the code snippet above the suspended main() is represented by instance m and could be stored in containers or
managed just like f by a scheduling algorithm.

The proposed fiber API allows representing and handling main() and the current thread’s entry-function by an
instance of std::fiber_context in the same way as explicitly created fibers.

fiber returns (terminates) When a fiber returns (terminates), what should happen next? Which fiber should be
resumed next? The only way to avoid internal global variables that point to main() is to explicitly return a non-empty
std::fiber_context instance that will be resumed after the active fiber terminates.

1 int main(){
2 fiber_context f{[](fiber_context&& m){
3 return std::move(m); // resume ‘main()‘ by returning ‘m‘
4 }, assert_on_cancel};
5 f = std::move(f).resume(); // resume ‘f‘
6 assert(f.empty());
7 return 0;
8 }

In line 5 the fiber is started by invoking resume() on instance f. main() is suspended and an instance of type
fiber_context is synthesized and passed as parameter m to the lambda at line 2. The fiber terminates by returning m.
Control is transferred to main() (returning from f.resume() at line 5) while fiber f is destroyed.

In a more advanced example another std::fiber_context is used as return value instead of the passed in synthesized
fiber.

1 int main(){
2 fiber_context m;
3 fiber_context f1{[&](fiber_context&& f){
4 std::cout << "f1: entered first time" << std::endl;
5 assert(!f);
6 return std::move(m); // resume (main-)fiber that has started ‘f2‘
7 }, assert_on_cancel};
8 fiber_context f2{[&](fiber_context&& f){
9 std::cout << "f2: entered first time" << std::endl;

10 m=std::move(f); // preserve ‘f‘ (== suspended main())
11 return std::move(f1);
12 }, assert_on_cancel};
13 std::move(f2).resume();
14 std::cout << "main: done" << std::endl;
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15 return 0;
16 }
17
18 output:
19 f2: entered first time
20 f1: entered first time
21 main: done

At line 13 fiber f2 is resumed and the lambda is entered at line 8. The synthesized std::fiber_context f (representing
suspended main()) is passed as a parameter f and stored in m (captured by the lambda) at line 10. This is necessary in
order to prevent destructing f when the lambda returns. Fiber f2 uses f1, that was also captured by the lambda, as return
value. Fiber f2 terminates while fiber f1 is resumed (entered the first time). The synthesized std::fiber_context f
passed into the lambda at line 3 represents the terminated fiber f2 (e.g. the calling fiber). Thus instance f is empty as the
assert statement verifies at line 5. Fiber f1 uses the captured std::fiber_context m as return value (line 6). Control is
returned to main(), returning from f2.resume() at line 13.

The entry-function passed to std::fiber_context’s constructor must have signature
‘fiber_context(fiber_context&&) ‘. Using std::fiber_context as the return value from such a func-
tion avoids global variables.

returning synthesized std::fiber_context instance from resume() An instance of std::fiber_context
remains empty after return from resume(), resume_with(), resume_from_any_thread() or
resume_from_any_thread_with()– the synthesized fiber is returned, instead of implicitly updating the
std::fiber_context instance on which resume() was called.

If the std::fiber_context object were implicitly updated, the fiber would change its identity because each fiber is
associated with a stack. Each stack contains a chain of function calls (call stack). If this association were implicitly modified,
unexpected behaviour happens.

The example below demonstrates the problem:

1 int main(){
2 fiber_context m,f1,f2,f3;
3 f3=fiber_context{[&](fiber_context&& f)->fiber_context{
4 f2=std::move(f);
5 for(;;){
6 std::cout << "f3 ";
7 std::move(f1).resume();
8 }
9 return {};

10 }, assert_on_cancel};
11 f2=fiber_context{[&](fiber_context&& f)->fiber_context{
12 f1=std::move(f);
13 for(;;){
14 std::cout << "f2 ";
15 std::move(f3).resume();
16 }
17 return {};
18 }, assert_on_cancel};
19 f1=fiber_context{[&](fiber_context&& f)->fiber_context{
20 m=std::move(f);
21 for(;;){
22 std::cout << "f1 ";
23 std::move(f2).resume();
24 }
25 return {};
26 }, assert_on_cancel};
27 std::move(f1).resume();
28 return 0;
29 }
30
31 output:
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32 f1 f2 f3 f1 f3 f1 f3 f1 f3 ...

In this pseudo-code the std::fiber_context object is implicitly updated.

The example creates a circle of fibers: each fiber prints its name and resumes the next fiber (f1 -> f2 -> f3 -> f1 -> ...).

Fiber f1 is started at line 26. The synthesized std::fiber_context main passed to the resumed fiber is stored but not
used: control flow cycles through the three fibers. The for-loop prints the name f1 and resumes fiber f2. Inside f2’s for-loop
the name is printed and f3 is resumed. Fiber f3 resumes fiber f1 at line 7. Inside f1 control returns from f2.resume().
f1 loops, prints out the name and invokes f2.resume(). But this time fiber f3 instead of f2 is resumed. This is caused
by the fact the instance f2 gets the synthesized std::fiber_context of f3 implicitly assigned. Remember that at line
7 fiber f3 gets suspended while f1 is resumed through f1.resume().

This problem can be solved by returning the synthesized std::fiber_context from resume(), resume_with(),
resume_from_any_thread() or resume_from_any_thread_with().

int main(){
fiber_context m,f1,f2,f3;
f3=fiber_context{[&](fiber_context&& f)->fiber_context{

f2=std::move(f);
for(;;){

std::cout << "f3 ";
f2=std::move(f1).resume();

}
return {};

}, assert_on_cancel};
f2=fiber_context{[&](fiber_context&& f)->fiber_context{

f1=std::move(f);
for(;;){

std::cout << "f2 ";
f1=std::move(f3).resume();

}
return {};

}, assert_on_cancel};
f1=fiber_context{[&](fiber_context&& f)->fiber_context{

m=std::move(f);
for(;;){

std::cout << "f1 ";
f3=std::move(f2).resume();

}
return {};

}, assert_on_cancel};
std::move(f1).resume();
return 0;

}

output:
f1 f2 f3 f1 f2 f3 f1 f2 f3 ...

In the example above the synthesized std::fiber_context returned by each resume() call is specifically move-
assigned to a std::fiber_context instance other than the one on which resume() was called, to properly track the
three fibers. (Of course this particular example depends on static knowledge of the overall control flow. But the API does
not, in general, require that.)

The synthesized std::fiber_context must be returned from resume(), resume_with(),
resume_from_any_thread() and resume_from_any_thread_with() in order to prevent changing the
identity of the fiber.

If the overall control flow isn’t known, member functions resume_with() or resume_from_any_thread_with()
(see section inject function into suspended fiber) can be used to assign the synthesized std::fiber_context to the
correct std::fiber_context instance (held by the caller).
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class filament{
private:

fiber_context f_;

public:
...
void resume_next( filament& fila){

std::move(fila.f_).resume_with([this](fiber_context&& f)->fiber_context{
f_=std::move(f);
return {};

}
}

};

Picture a higher-level framework in which every fiber can find its associated filament instance, as well as others. Every
context switch must be mediated by passing the target filament instance to the running fiber’s resume_next().

Running fiber A has an associated filament instance filamentA, whose std::fiber_context filament::f_ is
empty – because fiber A is running.

Desiring to switch to suspended fiber B (with associated filament filamentB), running fiber A calls
filamentA.resume_next(filamentB).

resume_next() calls filamentB.f_.resume_with(<lambda>). This empties filamentB.f_ – because fiber B is
now running.

The lambda binds &filamentA as this. Running on fiber B, it receives a std::fiber_context instance representing
the newly-suspended fiber A as its parameter f. It moves that std::fiber_context instance to filamentA.f_.

The lambda then returns a default-constructed (therefore empty) std::fiber_context instance. That empty instance is
returned by the previously-suspended resume_with() call in filamentB.resume_next() – which is fine because
resume_next() drops it on the floor anyway.

Thus, the running fiber’s associated filament::f_ is always empty, whereas the filament associated with each
suspended fiber is continually updated with the std::fiber_context instance representing that fiber.∗

It is not necessary to know the overall control flow. It is sufficient to pass a reference/pointer of the caller (fiber that
gets suspended) to the resumed fiber that move-assigns the synthesized std::fiber_context to caller (updating
the instance).

inject function into suspended fiber

Sometimes it is useful to inject a new function (for instance, to throw an exception or assign the synthesized fiber to the
caller as described in returning synthesized std::fiber_context instance from resume()) into a suspended fiber. For
this purpose resume_with(Fn&& fn) (or resume_from_any_thread_with()) may be called, passing the function
fn() to execute.

1 fiber_context f([](fiber_context&& caller){
2 // ...
3 std::move(caller).resume();
4 // ...
5 }, assert_on_cancel);
6
7 fiber_context fn(fiber_context&&);
8
9 f = std::move(f).resume();

10 // ...
11 std::move(f).resume_with(fn);

The resume_with() call at line 11 injects function fn() into fiber f as if the resume() call at line 3 had directly called
fn().

∗ Boost.Fiber24 uses this pattern for resuming user-land threads.
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Like an entry-function passed to std::fiber_context, fn() must accept std::fiber_context&& and return
std::fiber_context. The std::fiber_context instance returned by fn() will, in turn, be returned to f’s lambda
by the resume() at line 3.

Suppose that code running on the program’s main fiber calls resume() (line 12 below), thereby entering the first lambda
shown below. This is the point at which m is synthesized and passed into the lambda at line 2.

Suppose further that after doing some work (line 4), the lambda calls m.resume(), thereby switching back to the main
fiber. The lambda remains suspended in the call to m.resume() at line 5.

At line 18 the main fiber calls f.resume_with() where the passed lambda accepts fiber_context &&. That new
lambda is called on the fiber of the suspended lambda. It is as if the m.resume() call at line 8 directly called the second
lambda.

The function passed to resume_with() has almost the same range of possibilities as any function called on the fiber
represented by f. Its special invocation matters when control leaves it in either of two ways:

1. If it throws an exception, that exception unwinds all previous stack entries in that fiber (such as the first lambda’s)
as well, back to a matching catch clause.∗

2. If the function returns, the returned std::fiber_context instance is returned by the suspended m.resume()
(or resume_with(), or resume_from_any_thread(), or resume_from_any_thread_with()) call.

1 int data = 0;
2 fiber_context f{[&data](fiber_context&& m){
3 std::cout << "f1: entered first time: " << data << std::endl;
4 data+=1;
5 m=std::move(m).resume();
6 std::cout << "f1: entered second time: " << data << std::endl;
7 data+=1;
8 m=std::move(m).resume();
9 std::cout << "f1: entered third time: " << data << std::endl;

10 return std::move(m);
11 }, assert_on_cancel};
12 f=std::move(f).resume();
13 std::cout << "f1: returned first time: " << data << std::endl;
14 data+=1;
15 f=std::move(f).resume();
16 std::cout << "f1: returned second time: " << data << std::endl;
17 data+=1;
18 f=std::move(f).resume_with([&data](fiber_context&& m){
19 std::cout << "f2: entered: " << data << std::endl;
20 data=-1;
21 return std::move(m);
22 });
23 std::cout << "f1: returned third time" << std::endl;
24
25 output:
26 f1: entered first time: 0
27 f1: returned first time: 1
28 f1: entered second time: 2
29 f1: returned second time: 3
30 f2: entered: 4
31 f1: entered third time: -1
32 f1: returned third time

The f.resume_with(<lambda>) call at line 18 passes control to the second lambda on the fiber of the first lambda.

As usual, resume_with() synthesizes a std::fiber_context instance representing the calling fiber, passed into the
lambda as m. This particular lambda returns m unchanged at line 21; thus that m instance is returned by the resume() call
at line 8.

Finally, the first lambda returns at line 10 the m variable updated at line 8, switching back to the main fiber.

∗As stated in exceptions, if there is no matching catch clause in that fiber, std::terminate() is called.
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One case worth pointing out is when you call resume_with() (or resume_from_any_thread_with()) on a
std::fiber_context that has not yet been resumed for the first time:

1 fiber_context topfunc(fiber_context&& prev);
2 fiber_context injected(fiber_context&& prev);
3
4 fiber_context f(topfunc, assert_on_cancel);
5 // topfunc() has not yet been entered
6 std::move(f).resume_with(injected);

In this situation, injected() is called with a std::fiber_context instance representing the caller of resume_with().
When injected() eventually returns that (or some other) std::fiber_context instance, the returned
std::fiber_context instance is passed into topfunc() as its prev parameter.

Member functions resume_with() and resume_from_any_thread_with() allow you to inject a function into a
suspended fiber.

passing data between fibers

Data can be transferred between two fibers via global pointer, a calling wrapper (like std::bind) or lambda capture.

1 int i=1;
2 std::fiber_context lambda{[&i](fiber_context&& caller){
3 std::cout << "inside lambda,i==" << i << std::endl;
4 i+=1;
5 caller=std::move(caller).resume();
6 return std::move(caller);
7 }, assert_on_cancel};
8 lambda=std::move(lambda).resume();
9 std::cout << "i==" << i << std::endl;

10 lambda=std::move(lambda).resume();
11
12 output:
13 inside lambda,i==1
14 i==2

The resume() call at line 8 enters the lambda and passes 1 into the new fiber. The value is incremented by one, as shown
at line 4. The expression caller.resume() at line 5 resumes the original context (represented within the lambda by
caller).

The call to lambda.resume() at line 10 resumes the lambda, returning from the caller.resume() call at line 5. The
std::fiber_context instance caller emptied by the resume() call at line 5 is replaced with the new instance
returned by that same resume() call.

Finally the lambda returns (the updated) caller at line 6, terminating its context.

Since the updated caller represents the fiber suspended by the call at line 10, control returns to main().

However, since context lambda has now terminated, the updated lambda is empty. Its operator bool() returns
false.

Using lambda capture is the preferred way to transfer data between two fibers; global pointers or a calling wrapper
(such as std::bind) are alternatives.

termination

Every std::fiber_context you launch must terminate gracefully by returning from its top-level function.
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When an explicitly-launched fiber’s entry-function returns a non-empty std::fiber_context instance, the running
fiber is terminated. Control switches to the fiber indicated by the returned std::fiber_context instance. The entry-
function may return (switch to) any reachable non-empty std::fiber_context instance – it need not be the instance
originally passed in, or an instance returned from any of the resume() family of methods.

Calling resume() means: “Please switch to the indicated fiber; I am suspending; please resume me later.”

Returning a particular std::fiber_context means: “Please switch to the indicated fiber; and by the way, I am done.”

The cancellation-function / cancel() mechanism provides a way for consuming code to attempt to communicate to
a suspended fiber the desire that it should terminate. The intention is that consuming code may call cancel() before
destroying a std::fiber_context instance that might not be empty, or is known not to be empty. Passing a cancellation-
function cancelfn() to a fiber’s constructor, and subsequently calling cancel() on a std::fiber_context instance
representing that fiber, is equivalent to calling resume_with(cancelfn).

The interaction between a cancellation-function and any particular fiber is the responsibility of consuming code. Use of
cancel() does not guarantee that the subject fiber has in fact terminated. The std::fiber_context instance returned
by cancel() is the same that would have been returned by the equivalent resume_with() call.

Suppose we have a std::fiber_context instance f1 representing suspended fiber F. The running fiber M calls
f1.cancel(), which returns another std::fiber_context instance f2.

f2 has various possible values.

• f2 might be empty. This might mean that fiber F did in fact terminate.

• Alternatively, it might mean that fiber F, instead of terminating, resumed fiber G, which terminated by resuming
fiber M.

• Or fiber F might have terminated by resuming fiber G, which might have terminated by resuming fiber M.

• In other words, if f2 is empty, fiber M cannot know the present state of fiber F.

• f2 might not be empty. That might mean that fiber F did not terminate before resuming fiber M. f2 would represent
fiber F.

• Or it might mean that fiber F terminated by resuming fiber G, which might have resumed fiber M. f2 would
represent fiber G.

• Or it might mean that fiber F, instead of terminating, resumed fiber G, which resumed fiber M. f2 would (again)
represent fiber G.

• In other words, if f2 is not empty, fiber M cannot know the present state of fiber F.

The launch() function introduced in code common to examples in this paper illustrates a possible way to use the
cancellation-function / cancel() mechanism.

exceptions

If an uncaught exception escapes from a fiber’s entry-function, std::terminate is called.

std::fiber_context as building block for higher-level frameworks

A low-level API enables a rich set of higher-level frameworks that provide specific syntaxes/semantics suitable for specific
domains. As an example, the following frameworks are based on the low-level fiber switching API of Boost.Context22

(which implements the API proposed here).

Boost.Coroutine223 implements asymmetric coroutines coroutine<>::push_type and
coroutine<>::pull_type, providing a unidirectional transfer of data. These stackful coroutines are only used in pairs.
When coroutine<>::push_type is explicitly instantiated, coroutine<>::pull_type is synthesized and passed as
parameter into the coroutine function. In the example below, coroutine<>::push_type (variable writer) provides
the resume operation, while coroutine<>::pull_type (variable in) represents the suspend operation. Inside the
lambda,in.get() pulls strings provided by coroutine<>::push_type’s output iterator support.
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struct FinalEOL{ ~FinalEOL(){ std::cout << std::endl; } };
std::vector<std::string> words{

"peas", "porridge", "hot", "peas",
"porridge", "cold", "peas", "porridge",
"in", "the", "pot", "nine",
"days", "old" };

int num=5,width=15;
boost::coroutines2::coroutine<std::string>::push_type writer{

[&](boost::coroutines2::coroutine<std::string>::pull_type& in){
FinalEOL eol;
for (;;){

for (int i=0; i<num; ++i){
if (!in){

return;
}
std::cout << std::setw(width) << in.get();
in();

}
std::cout << std::endl;

}
}};

std::copy(std::begin(words), std::end(words), std::begin(writer));

Synca31 (by Grigory Demchenko) is a small, efficient library to perform asynchronous operations using source code that
resembles synchronous operations. The main features are a GO-like syntax, support for transferring execution context
explicitly between different thread pools or schedulers (portals/teleports) and asynchronous network support.

int fibo(int v){
if (v<2) return v;
int v1,v2;
Waiter()

.go([v,&v1]{ v1=fibo(v-1); })

.go([v,&v2]{ v2=fibo(v-2); })

.wait();
return v1+v2;

}

The code itself looks like synchronous invocations while internally it uses asynchronous scheduling.

Boost.Fiber 24 implements user-land threads and combines fibers with schedulers (the scheduler algorithm is a cus-
tomization point). The API is modelled after the std::thread API and contains objects such as future, mutex,
condition_variable ...

boost::fibers::unbuffered_channel<unsigned int> chan;
boost::fibers::fiber f1{[&chan]{

chan.push(1);
chan.push(1);
chan.push(2);
chan.push(3);
chan.push(5);
chan.push(8);
chan.push(12);
chan.close();

}};
boost::fibers::fiber f2{[&chan]{

for (unsigned int value: chan) {
std::cout << value << " ";

}
std::cout << std::endl;

}};
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f1.join();
f2.join();

Facebook’s folly::fibers27 is an asynchronous C++ framework using user-land threads for parallelism. In contrast to
Boost.Fiber, folly::fibers exposes the scheduler and permits integration with various event dispatching libraries.

folly::EventBase ev_base;
auto& fiber_manager=folly::fibers::getFiberManager(ev_base);
folly::fibers::Baton baton;
fiber_manager.addTask([&]{

std::cout << "task 1: start" << std::endl;
baton.wait();
std::cout << "task 1: after baton.wait()" << std::endl;

});
fiber_manager.addTask([&]{

std::cout << "task 2: start" << std::endl;
baton.post();
std::cout << "task 2: after baton.post()" << std::endl;

});
ev_base.loop();

folly::fibers is used in many critical applications at Facebook for instance in mcrouter25 and some other Facebook ser-
vices/libraries like ServiceRouter (routing framework for Thrift26), Node API (graph ORM API for graph databases)
...

Bloomberg’s quantum28 is a full-featured and powerful C++ framework that allows users to dispatch units of work
(a.k.a. tasks) as coroutines and execute them concurrently using the ’reactor’ pattern. Its main features are support for
streaming futures which allows faster processing of large data sets, task prioritization, fast pre-allocated memory pools
and parallel forEach and mapReduce functions.

// Define a coroutine
int getDummyValue(Bloomberg::quantum::CoroContext<int>::Ptr ctx) {

int value;
... //do some work
ctx->yield(); //be nice and let other coroutines run (optional cooperation)
... //do more work and calculate ’value’
return ctx->set(value);

}
// Create a dispatcher
Bloomberg::quantum::Dispatcher dispatcher;
// Dispatch a work item to do some work and return a value
int result = dispatcher.post(getDummyValue)->get();

quantum is used in large projects at Bloomberg.

Habanero Extreme Scale Software Research Project29 provides a task-based parallel programming model via
its HClib.30 The runtime provides work-stealing, async-finish,∗ parallel-for and future-promise parallel programming
patterns. The library is not an exascale programming system itself, but it manages intra-node resources and schedules
components within an exascale programming system.

Intel’s TBB32 internally uses fibers for long running jobs† as reported by Intel.

As shown in this section a low-level API can act as building block for a rich set of high-level frameworks designed
for specific application domains that require different aspects of design, semantics and syntax.

∗async-finish is a variant of the fork-join model. While a task might fork a group of child tasks, the child tasks might fork even more
tasks. All tasks can potentially run in parallel with each other. The model allows a parent task to selectively join a subset of child tasks.

†because of the requirement to support a broad range of architectures swapcontext() was used
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interaction with STL algorithms

In the following example STL algorithm std::generate and fiber g generate a sequence of Fibonacci numbers and store
them into std::vector v.

int a;
autocancel consumer, generator;
generator = launch([&a,&consumer,&generator](std::fiber_context&& m){

a=0;
int b=1;
for(;;){

generator.resume(consumer);
int next=a+b;
a=b;
b=next;

}
return std::move(m);

});
consumer = launch([&a,&consumer,&generator](std::fiber_context&& m){

std::vector<int> v(10);
std::generate(v.begin(), v.end(), [&a,&generator]() mutable {

consumer.resume(generator);
return a;

});
std::cout << "v: ";
for (auto i: v) {

std::cout << i << " ";
}
std::cout << "\n";
return std::move(m);

});
consumer.resume();

output: v: 0 1 1 2 3 5 8 13 21 34

The proposed fiber API does not require modifications of the STL and can be used together with existing STL
algorithms.

possible implementation strategies

This proposal does N O T seek to standardize any particular implementation or impose any specific calling con-
vention!

Modern micro-processors are register machines; the content of processor registers represents the execution context of the
program at a given point in time.

Operating systems maintain for each process all relevant data (execution context, other hardware registers etc.) in the
process table. The operating system’s CPU scheduler periodically suspends and resumes processes in order to share CPU
time between multiple processes. When a process is suspended, its execution context (processor registers, instruction
pointer, stack pointer, ...) is stored in the associated process table entry. On resumption, the CPU scheduler loads the
execution context into the CPU and the process continues execution.

The CPU scheduler does a full context switch. Besides preserving the execution context (complete CPU state), the cache
must be invalidated and the memory map modified.

A kernel-level context switch is several orders of magnitude slower than a context switch at user-level.6

hypothetical fiber preserving complete CPU state This strategy tries to preserve the complete CPU state, e.g. all
CPU registers. This requires that the implementation identifies the concrete micro-processor type and supported processor
features. For instance the x86-architecture has several flavours of extensions such as MMX, SSE1-4, AVX1-2, AVX-512.
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Depending on the detected processor features, implementations of certain functionality must be switched on or off. The
CPU scheduler in the operating system uses such information for context switching between processes.

A fiber implementation using this strategy requires such a detection mechanism too (equivalent to swapper/system_32()
in the Linux kernel).

Aside from the complexity of such detection mechanisms, preserving the complete CPU state for each fiber switch is
expensive.

A context switch facility that preserves the complete CPU state like an operating system is possible but impractical
for user-land.

fiber switch using the calling convention For std::fiber_context, not all registers need be preserved because
the context switch is effected by a visible function call. It need not be completely transparent like an operating-system
context switch; it only needs to be as transparent as a call to any other function. The calling convention – the part of the
ABI that specifies how a function’s arguments and return values are passed – determines which subset of micro-processor
registers must be preserved by the called subroutine.

The calling convention21 of SYSV ABI for x86_64 architecture determines that general purpose registers R12, R13, R14,
R15, RBX and RBP must be preserved by the sub-routine - the first arguments are passed to functions via RDI, RSI, RDX,
RCX, R8 and R9 and return values are stored in RAX, RDX.

So on that platform, the resume() implementation preserves the general purpose registers (R12-R15, RBX and RBP)
specified by the calling convention. In addition, the stack pointer and instruction pointer are preserved and exchanged
too – thus, from the point of view of calling code, resume() behaves like an ordinary function call.

In other words, resume() acts on the level of a simple function invocation – with the same performance characteristics (in
terms of CPU cycles).

This technique is used in Boost.Context22 which acts as building block for (e.g.) folly::fibers and quantum; see section
std::fiber_context as building block for higher-level frameworks.

in-place substitution at compile time During code generation, a compiler-based implementation could inject the
assembler code responsible for the fiber switch directly into each function that calls resume(). That would save an extra
indirection (JMP + PUSH/MOV of certain registers used to invoke resume()).

CPU state on the stack Because each fiber must preserve CPU registers at suspension and load those registers at
resumption, some storage is required.

Instead of allocating extra memory for each fiber, an implementation can use the stack by simply advancing the stack
pointer at suspension and pushing the CPU registers (CPU state) onto the stack owned by the suspending fiber. When the
fiber is resumed, the values are popped from the stack and loaded into the appropriate registers.

This strategy works because only a running fiber creates new stack frames (moving the stack pointer). While a fiber is
suspended, it is safe to keep the CPU state on its stack.

Using the stack as storage for the CPU state has the additional advantage that std::fiber_context must only contain
a pointer to the stack location: its memory footprint can be that of a pointer.

Section synthesizing the suspended fiber describes how global variables are avoided by synthesizing a std::fiber_context
from the active fiber (execution context) and passing this synthesized std::fiber_context (representing the now-
suspended fiber) into the resumed fiber. Using the stack as storage makes this mechanism very easy to implement.∗ Inside
resume() the code pushes the relevant CPU registers onto the stack, and from the resulting stack address creates a new
std::fiber_context. This instance is then passed (or returned) into the resumed fiber (see synthesizing the suspended
fiber).

Using the active fiber’s stack as storage for the CPU state is efficient because no additional allocations or dealloca-
tions are required.

∗The implementation of Boost.Context22 utilizes this technique.
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fiber switch on architectures with register window

The implementation of fiber switch is possible – many libc implementations still provide the ucontext-API (swapcontext()
and related functions)∗ for architectures using a register window (such as SPARC). The implementation of swapcontext()
could be used as blueprint for a fiber implementation.

how fast is a fiber switch

A fiber switch takes 11 CPU cycles on a x86_64-Linux system† using an implementation based on the strategy described in
fiber switch using the calling convention (implemented in Boost.Context,22 branch fiber).

interaction with accelerators

For many core devices several programming models, such as OpenACC, CUDA, OpenCL etc., have been developed
targeting host-directed execution using an attached or integrated accelerator. The CPU executes the main program while
controlling the activity of the accelerator. Accelerator devices typically provide capabilities for efficient vector processing‡.
Usually the host-directed execution uses computation offloading that permits executing computationally intensive work
on a separate device (accelerator).4

For instance CUDA devices use a command buffer to establish communication between host and device. The host puts
commands (op-codes) into the command buffer and the device processes them asynchronously.5

It is obvious that a fiber switch does not interact with host-directed device-offloading. A fiber switch works like a function
call (see fiber switch using the calling convention).

multi-threading environment

Any thread in a program may be shared by multiple fibers.

A newly-instantiated fiber is not yet associated with any thread. However, once a fiber has been resumed the first time by
some thread, it must thereafter be resumed only by that same thread.

There could potentially be Undefined Behavior if:

• a function running on a fiber references thread_local variables

• the compiler/runtime implementation caches a pointer to thread_local storage in that function’s stack frame

• that fiber is suspended, and

• the suspended fiber is resumed on a different thread.

The cached TLS pointer is now pointing to storage belonging to some other thread. If the original thread terminates before
the new thread, the cached TLS pointer is now dangling.

For this reason, it is forbidden to resume a fiber on any thread other than the one on which it was first resumed.
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API

33.7 Cooperative User-Mode Threads [fiber-context]

33.7.1 General [fiber-context.general]

The extensions proposed here support creation and activation of cooperative user-mode threads, here called fibers.

The term “user-mode” means that control can be passed from one fiber to another without entering the operating-system
kernel.

The term “cooperative” means that typically multiple fibers share an underlying execution agent, for example a std::thread.
On the underlying execution agent, only one fiber is running at any given time. Sharing that agent is explicit rather
than pre-emptive. The running fiber suspends (or yields) to another fiber. This action launches a new fiber, or resumes a
previously-suspended fiber.

Suspending the running fiber in order to resume (or launch) another is called context switching.

The term “thread” in “cooperative user-mode thread” means that even though a given fiber may suspend and later be
resumed, it is logically a thread of execution as defined in [intro.multithread].

Launching a fiber logically creates a new function stack, which remains associated with that fiber throughout its lifetime.
Calling functions on a particular fiber, and returning from them, is independent of function calls and returns on any other
fiber.

Context switching can be effected by designating some other fiber’s stack as current, in a manner appropriate to the
existing implementation of function stacks.

33.7.2 Empty vs. Non-Empty [fiber-context.empty]

A std::fiber_context instance may be empty or non-empty. A default-constructed std::fiber_context is empty.
A moved-from std::fiber_context is empty. A std::fiber_context representing a suspended fiber is non-empty.

33.7.3 Explicit Fiber vs. Implicit Fiber [fiber-context.implicit]

The default thread on which the program runs main() has an initial default fiber whose stack is the stack on which main()
is entered. [ Note: Thus, when main() instantiates a new std::fiber_context, it becomes the second fiber in the
program. — end note ] Similarly, every explicitly-launched std::thread or std::jthread has an initial default fiber
whose stack is the stack on which the function passed to std::thread or std::jthread’s constructor is entered.

We use the phrase explicit fiber or explicitly-launched fiber to designate a fiber instantiated by user code; conversely, implicit
fiber designates the default fiber on any thread. An implicit fiber’s owning thread is the thread of which that fiber is the
default fiber. An explicit fiber has no owning thread. Instead, when necessary, we speak of the thread on which a fiber was
launched.

A fiber is explicitly instantiated by passing an entry-function to std::fiber_context’s constructor. This function is not
entered until the first call to one of the fiber_context::resume() family of methods.

When a fiber is first entered, a synthesized non-empty std::fiber_context instance representing the newly-suspended
previous fiber is passed as a parameter to its entry-function. Once entered, a fiber may suspend by calling one of the
resume() family of methods on any available non-empty std::fiber_context instance. When the suspended fiber is
resumed, that method returns a synthesized std::fiber_context instance representing the newly-suspended previous
fiber.

The synthesized std::fiber_context instance received in either of those ways might represent either an explicit fiber
or an implicit fiber.

An explicit fiber terminates by returning from its entry-function. If the entry-function returns a non-empty std::fiber_context
instance, the fiber represented by that std::fiber_context instance is resumed.

If the fiber’s entry-function exits via an exception, std::terminate is called.
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33.7.4 Header <experimental/fiber_context> synopsis [fiber-context.synopsis]

#include <fiber_context>

#define __cpp_lib_experimental_fiber_context 202002

namespace std {
namespace experimental {
inline namespace concurrency_v2 {

class fiber_context;

} // namespace concurrency_v2
} // namespace experimental
} // namespace std

33.7.5 Class fiber_context [fiber-context.class]

namespace std {
namespace experimental {
inline namespace concurrency_v2 {

class fiber_context {
public:

fiber_context() noexcept;

template<typename Fn0, typename Fn1>
explicit fiber_context(Fn0&& entry, Fn1&& cancel);

~fiber_context();

fiber_context(fiber_context&& other) noexcept;
fiber_context& operator=(fiber_context&& other) noexcept;
fiber_context(const fiber_context& other) noexcept = delete;
fiber_context& operator=(const fiber_context& other) noexcept = delete;

fiber_context resume() &&;
template<typename Fn>
fiber_context resume_with(Fn&& fn) &&;

fiber_context cancel() &&;

bool can_resume() noexcept;

explicit operator bool() const noexcept;
bool empty() const noexcept;
void swap(fiber_context& other) noexcept;

};

} // namespace concurrency_v2
} // namespace experimental
} // namespace std

fiber_context() noexcept ;

Effects:

— instantiates an empty std::fiber_context.

Ensures:

— empty() returns true.
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template<typename Fn0, typename Fn1> explicit fiber_context(Fn0&& entry, Fn1&& cancel) ;

Constraints:

— This constructor template shall not participate in overload resolution unless Fn0 and Fn1 are Lvalue-Invocable
[func.wrap.func] for the argument type std::fiber_context&& and the return type std::fiber_context.
Needs update to Invocable concept.

Effects:

— instantiates a std::fiber_context representing a fiber suspended before entry to entry. [ Note: entry is entered
only when resume() or resume_with() is called. — end note ]

— The stack and any other necessary resources are created.

— The cancellation-functioncancel is cached for possible later use. [ Note: cancel is invoked by
cancel() (q.v.). — end note ]

Throws:

— Any exception resulting from failure to acquire necessary system resources.

fiber_context(fiber_context&& other) noexcept ;

Effects:

— moves underlying state from other to new std::fiber_context

Ensures:

— empty() returns the value previously returned by other.empty()

— other.empty() returns true

~fiber_context() ;

Effects:

— destroys a std::fiber_context instance.

Requires:

— empty() returns true.

[ Note: If a std::fiber_context instance to be destroyed is not yet empty, an application must call cancel(), or
otherwise convey to the suspended fiber the need to terminate voluntarily. — end note ]

fiber_context& operator=(fiber_context&& other) noexcept ;

Requires:

— empty() returns true.

Effects:

— assigns the state of other to *this

Returns:

— *this

Ensures:

— empty() returns the value previously returned by other.empty()

— other.empty() returns true
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template<typename Fn> fiber_context resume_with(Fn&& fn) && ;

Constraints:

— This member function template shall not participate in overload resolution unless Fn is Lvalue-Invocable [func.wrap.func]
for the argument type std::fiber_context&& and the return type std::fiber_context.
Needs update to Invocable concept.

Requires:

— empty() returns false

— the calling thread is the same as the thread on which the fiber represented by *this was first resumed

Effects:

— Saves the execution context of the calling fiber.

— Suspends the calling fiber.

— Let caller be a synthesized std::fiber_context instance representing the suspended caller.

— Resumes the fiber represented by *this.

— Restores the execution context of the resumed fiber.

— Evaluates fn(caller) on the newly-resumed fiber. Let returned be the std::fiber_context instance returned
by fn. [ Note: returned may or may not be the same as caller. — end note ] [ Note: returned may be empty.
— end note ]

— If the fiber represented by *this has not previously been entered, passes returned to its entry-function.

— Otherwise, the fiber represented by *this previously suspended itself by calling one of resume() or resume_with().
Returns returned from whichever of the resume functions was called.

Remarks:

— A newly constructed but not yet resumed fiber may be resumed by any thread.

Returns:

fiber_context on resumption, resume_with() returns a std::fiber_context representing the immediately preced-
ing fiber: the fiber that resumed this one, thereby suspending itself

Throws:

— Any exception thrown by evaluating the fn parameter passed to some other fiber’s future call to resume_with() on
a std::fiber_context instance representing this suspended call to resume_with().

Ensures:

— empty() returns true

[ Note: The returned fiber_context indicates via empty() whether the previous active fiber has terminated (returned
from entry-function). — end note ]

[ Note: resume() or resume_with() empties the instance on which it is called. In order to express the state change
explicitly, these methods are rvalue-reference qualified. For this reason, no non-empty std::fiber_context instance
ever represents the currently-running fiber. — end note ]

fiber_context resume() && ;

Effects: Equivalent to:
resume_with([](fiber_context&& caller){ return std::move(caller); })
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fiber_context cancel() && ;

Requires:

— empty() returns true, or

— the fiber represented by *this is explicit

— the calling thread is the same as the thread on which the fiber represented by *this was first resumed

Effects:

— If empty() returns true, returns an empty std::fiber_context instance.

— Otherwise, equivalent to:
return resume_with(cancelfn);
where cancelfn is the cancellation-function passed to the constructor of *this. [ Note: If the immediately preced-
ing fiber resumed this one by terminating itself, the returned std::fiber_context will be empty. Otherwise,
depending on the interaction of the cancellation-function and the code on the fiber represented by *this, it may
or may not represent the fiber originally represented by *this at entry to cancel_from_any_thread(). — end
note ]

[ Note: The cancellation-function cancelfn may throw an exception, or set some state visible to the functions on that fiber.
— end note ]

[ Note: The requirement that, if non-empty, the fiber represented by *this must be explicit is due to the fact that an implicit
fiber was not constructed using the std::fiber_context constructor and thus has no cancellation-function. For an
implicit fiber, one must instead call resume_with(cancelfn), where cancelfn is the desired cancellation-function.
— end note ]

bool can_resume() noexcept ;

Returns:

— false if *this is empty, or if the calling thread is not the same as the thread on which the fiber represented by *this
was first resumed.

[ Note: When can_resume() returns true, the std::fiber_context instance may be resumed by resume() or
resume_with(). — end note ]

Remarks:

— can_resume() must not be called concurrently from multiple threads.

[ Note: can_resume() is not marked const because in at least one implementation, it requires an internal context switch.
However, the stack operations are effectively read-only. — end note ]

bool empty() const noexcept ;

Returns:

— false if *this represents a fiber of execution, true otherwise.

[ Note: Regardless of the number of std::fiber_context declarations, exactly one std::fiber_context instance
represents each suspended fiber. — end note ]

explicit operator bool() const noexcept ;

— Equivalent to (! empty())
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void swap(fiber_context& other) noexcept ;

Effects:

— Exchanges the state of *this with other.
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