
Relaxing Restrictions on Arrays
Document #: P1997R0
Date: 2019-11-25
Project: Programming Language C++

Evolution Working Group
Reply-to: Krystian Stasiowski

<sdkrystian@gmail.com>
Theodoric Stier
<kerdek7@gmail.com>

Contents
1 Abstract 2

2 Motivation 2

3 Proposal 3
3.1 Initialization . 3
3.2 Assignment . 3
3.3 Array return types . 4
3.4 Pseudo-destructors . 4
3.5 Placeholder type deduction . 4
3.6 Impact . 4

4 Design choices 6
4.1 Assignment and initialization . 6
4.2 Placeholder type deduction . 6
4.3 Pseudo-destructors . 6

5 Wording 6
5.1 Allow array assignment . 6
5.2 Allow array initialization . 7
5.3 Allow pseudo-destructor calls for arrays . 7
5.4 Allow returning arrays . 7
5.5 Deducing arrays with auto . 7
5.6 Copy elision for arrays . 8
5.7 Wording cleanup . 8

6 Acknowledgements 8

7 References 8

1

mailto:sdkrystian@gmail.com
mailto:kerdek7@gmail.com

1 Abstract
We propose endowing arrays with initialization and assignment from other arrays, placeholder semantics, pseudo-
destructors, and the ability to serve as return types, in order to bring consistency to the semantics of aggregates.

2 Motivation
Aggregates were created with the purpose of providing semantics and behavior which are reasonable to expect
from such types, but, while aggregate classes enjoy most of the provisions, arrays appear to possess some artificial
and confusing restrictions. It is currently possible to enjoy the semantics and behaviors of aggregate classes while
using an array by wrapping it or using std::array. Wrapping data in a type with a descriptive name is often
good practice, but some arrays are self-explanatory, and such wrapping only presents an unnecessary cognitive
burden in such cases.

int samples_x[5];
int samples_y[5] = samples_x;
// ill-formed, but self-explanatory

struct samples { int s[5]; };
samples x;
samples y = x; // OK, but why?

Beginners may not understand why arrays are element-wise copy/move constructible/assignable when they are
data members but not when they are named by local variables. To an expert, this limitation may appear
artificial, perhaps even backwards. Arrays could be readily understood as like aggregate classes except having
elements which are referred to by subscripts instead of names and no member functions, base classes, or operator
overloads.

Array return types are legible in trailing return type syntax.
auto make_coefs() -> int[3]

An aggregate class whose first element is an array with bound n must have n initializers before any later element
may be initialized.
struct lp_3_point
{

int coords[3];
float power;

};

auto make_euclidean_3_point(int (&c)[3]) -> lp_3_point
{

// must write four elements in order to initialize power
return { c[0], c[1], c[2], 2.0f };
// would make sense to initialize an array with an array
return { c, 2.0f };

}

If the user provides an assignment operator to a class having an array data member, they must explicitly iterate
over the elements to be assigned, or wrap the array as above.
class widget
{

gadget g[4]; // user-provided assignment is now painful
};

Allowing the initialization and assignment of arrays makes the language more like other high level languages

2

where array assignment is permitted. Addressing these caveats makes the language easier to learn and teach. In
addition to this, allowing arrays to be initialized from other arrays, assigned, returned, and destructed makes
writing generic code much easier, as it removes the need for special cases when a parameter is of array type.
This opens up several use cases, such as the following use for std::fill:
template<class ForwardIt, class T = typename iterator_traits<ForwardIt>::value_type>
constexpr void fill(ForwardIt first, ForwardIt last, const T& value);

With this addition of a default argument to facilitate the use of an initializer list as an argument for value, it
makes it possible to use std::fill to assign arrays within a multidimensional array with ease.

3 Proposal
We propose to define initialization and assignment of an array type by a similar array type, to define array return
types, to define array pseudodestructors, and to define reasonable type deduction for array placeholder types.

3.1 Initialization
Expressions of array type may be used as initializers for array objects having the same element type. The
elements of the object are initialized using the corresponding elements of the value. Array bounds are deduced
when the declaration type is an unbounded array.

C++20 Proposed

std::string x[] = { "foo", "bar" };
std::string y0[] = x; // ill-formed
std::string y1[3] = x; // ill-formed
std::string y2[] = std::move(x); // ill-formed

std::string x[] = { "foo", "bar" };
std::string y0[] = x; // the elements of y0 are "foo", "bar"
std::string y1[3] = x; // ill-formed; bounds do not match
std::string y2[] = std::move(x); // elements of x are moved-from

3.2 Assignment
Expressions of array type may be used as the right hand side of built-in assignment for array objects having the
same element type. The elements of the object are assigned using the corresponding elements of the value.

C++20 Proposed

int x[] = { 1, 2 };
int y[] = { 3, 4 };
x = y; // ill-formed

int x[] = { 1, 2 };
int y[] = { 3, 4 };
x = y; // the elements of x are 3, 4

3

3.3 Array return types
Array return types are permitted. Copy elision is defined for arrays.

C++20 Proposed

auto f() -> std::string[2]
{

return { "foo", "bar" };
}
std::string x[2] = f(); // ill-formed

auto f() -> std::string[2]
{

return { "foo", "bar" };
}
std::string x[2] = f(); // only one constructor call per element

3.4 Pseudo-destructors
Pseudo-destructors are defined for array types; elements are destroyed in reverse subscript order.

C++20 Proposed

using T = std::string[2];
T x = { "foo", "bar" };
x.~T(); // ill-formed

using T = std::string[2];
T x = { "foo", "bar" };
x.~T(); // two calls to string destructor

3.5 Placeholder type deduction
The placeholder type auto is permitted as the element type of an array; the type is deduced from the initializer.

C++20 Proposed

int x[] = { 42, 0 };
auto y[] = x; // ill-formed

int x[] = { 42, 0 };
auto y[] = x; // placeholder is int

3.6 Impact
Such initialization and assignment could simplify the implementation of container types such as std::vector,
which reduces the likelihood of programming errors.

4

C++20 Proposed

template<size_t N>
class T
{
public:

T & operator=(T const & other)
{

for(int i = 0; i < N; i++) // bug-prone
{

samples[i] = other.samples[i];
}

}
private:

int samples[N];
};

template<size_t N>
class T
{
public:

T & operator=(T const & other)
{

samples = other.samples; // less bug-prone
}

private:
int samples[N];

};

We believe that providing this similarity by defining initialization and assignment from an array does not sacrifice
any backward compatibility with the C language. The related semantics are not currently valid in any C or C++
program.

C++20 Proposed

using T = U[N];
T x;
// all ill-formed
T y0{ x };
y0 = x;
[&]() -> T { return x; }();
auto y1[] = std::move(x);
x.~T();

using T = U[N];
T x;
// all well-formed
T y0{ x };
y0 = x;
[&]() -> T { return x; }();
auto y1[] = std::move(x);
x.~T();

Some C++ programs may have their meaning changed. For example, the value defined by std::is_assignable
will change for some specializations.

C++20 Proposed

static_assert(!std::is_assignable_v<T(&)[N], T[N]>);
static_assert(!std::is_assignable_v<T(&)[N], T(&)[N]>);
static_assert(!std::is_assignable_v<T(&)[N], T(&&)[N]>);

static_assert(std::is_assignable_v<T(&)[N], T[N]>);
static_assert(std::is_assignable_v<T(&)[N], T(&)[N]>);
static_assert(std::is_assignable_v<T(&)[N], T(&&)[N]>);

5

4 Design choices
4.1 Assignment and initialization
For both assignment and initialization, the types of the arrays must match exactly, save for cv-qualification.
For assignment, this is done to ensure that when the assignment of an array is called for, it will always assign
exactly the number of elements contained within the array, to avoid surprising the user through not assigning
every element. In the case of initialization, the same restriction exists for similar reasons, as to not leave
elements that are value or default-initialized. Additionally, each element of the array is assigned or initialized
as if by a subscript expression to carry the value category of the array expression to that of each element during
initialization, resulting in the appropriate copy/move constructors being called.

4.2 Placeholder type deduction
The restriction of the placeholder type auto being prohibited as the element type of an array is removed. This
is to preserve backwards compatibility by not changing the existing behavior of declarations using auto with an
initializer of array type, and instead introducing new syntax to facilitate the deduction of the arrays element
type without the array-to-pointer conversion that usually occurs. The deduction process does not deduce the
bounds, and instead they are calculated from the initializer separately as specified in [dcl.array] p7, therefore
code such as this:
int a[4];
int (&b)[] = a; // ill-formed
auto (&c)[] = a; // ill-formed

does not become well-formed, as the accompanying reference binding without the placeholder is not well-formed
either. Normal deduction using a reference to the placeholder type auto will be unchanged. Placeholders for a
deduced class type and decltype(auto) are not permitted as an arrays element type, and remain unchanged.

4.3 Pseudo-destructors
Currently, pseudo-destructors have no effect, but [P0593R5] will change them so that they end the lifetime of the
object they are called upon. This should also be permitted for array objects, and have the effect of destroying
the object, as specified by [dcl.init] p21. This would destroy the elements of the array in reverse order, and then
the array itself.

5 Wording
All wording is relative to N4835 except for the changes under 5.3 which are relative to the proposed wording of
[P0593R5].

5.1 Allow array assignment
Changes to [expr.ass] p2

2 In simple assignment (=)of the form E1 = E2, when the left operand is not of array type, the object referred
to by the left operand is modified by replacing its value with the result of the right operand. If the left
operand is of type “array of N T”, the right operand shall be of the same type (ignoring cv-qualification) and
the effect is identical to performing E1[i] = E2[i] for each 0 ≤ i < N.

6

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4835.pdf

5.2 Allow array initialization
Changes to [dcl.init] p17 sub 5

(17.5) Otherwise, if the destination type is an array:

—(17.5.1) If the source type is “array of M cv1 T”, and the destination type is “array of N cv2 U” or “array of
unknown bound of cv2 T”, M shall be N and T shall be U. Then, if the initializer expression is a prvalue,
the initializer expression is used to initialize the destination object. Otherwise, each array element xᵢ
is copy-initialized with the expression e[i] for 0 ≤ i < N where e is the initializer expression.

—(17.5.2) Otherwise, if the destination type is an array, the object is initialized as follows. let x₁, …, xₖ be the
elements of the expression-list. If the destination type is an array of unknown bound, it is defined as
having k elements. […]

Changes to [dcl.init.list] p3 sub 2
(3.2) If T is an aggregate class and the initializer list has a single element of type cv U, where U is T, orif T is a class

type, a class derived from T, the object is initialized […]

5.3 Allow pseudo-destructor calls for arrays
This wording is relative to that of the changes proposed by [P0593R5]

Changes to [expr.prim.id.dtor] p2
2 If the id-expression names a pseudo-destructor, T shall be a scalar or array type and the id-expression shall

appear as the right operand of a class member access […]

Changes to [expr.ref] p3
3 […] If the object expression is of scalar or array type, E2 shall name the pseudo-destructor of that same type

(ignoring cv-qualifications) and E1.E2 is an lvalue […]

Changes to [expr.call] p5
5 […] If the postfix-expression names a pseudo-destructor, the postfix-expression must be a possibly-

parenthesized class member access, and the function call destroys the object of scalar type denoted by the
object expression of the class member access.

Changes to [dcl.init] p21
21 […] Destroying an array destroys each element in reverse subscript order, and then ends the lifetime of the

array object.

5.4 Allow returning arrays
Changes to [dcl.fct] p11

11 Functions shall not have a return type of function type array or function, although they may have a return
type of type pointer or reference to such thingsfunction. There shall be no arrays of functions, although there
can be arrays of pointers to functions.

5.5 Deducing arrays with auto

Changes to [dcl.array] p4
4 U is called the array element type; this type shall not be a placeholder type of the form type-constraintₒₚₜ

decltype(auto), a reference type, a function type, an array of unknown bound, or cv void.

7

Changes to [dcl.type.auto.deduct] p4
4 […] Deduce a value for U using the rules of template argument deduction from a function call, where P is a

function template parameter type and the corresponding argument is e, except that if P is an array type, P&
is used in place of P in the synthesized function template. If the deduction fails, the declaration is ill-formed.
Otherwise, T′ is obtained by substituting the deduced U into P.

Changes to [dcl.array] p7
7 […] In these cases, the array bound N is calculated from the number of initial elements (say, N) supplied,

and the type of the array is “array of N U”.initializer as follows:

—(7.1) if the initializer expression is of type “array of M T” or is an initializer list with one element of type
“array of M T”, then N is M

—(7.2) otherwise, N is the number of initializer-clauses in the braced-init-list or expression-list.

The type of the array is “array of N U”.

Changes to [dcl.init.aggr] p9
9 An array of unknown bound initialized with a brace-enclosed initializer-list containing n initializer-clauses is

defined as having n elements.

5.6 Copy elision for arrays
Changes to [class.copy.elision] p1

1 When certain criteria are met, an implementation is allowed to omit the copy/move construction of a class
object or array of class objects, even if the constructor selected for the copy/move operation(s) and/or the
destructor for the object or its elements have side effects. In such cases, the implementation treats the source
and target of the omitted copy/move operation(s) as simply two different ways of referring to the same object.
If the first parameter of the selected constructor is an rvalue reference to the object’s type (or, in the case of
an array, its element type), the destruction of that object occurs when the target would have been destroyed;
otherwise, the destruction occurs at the later of the times when the two objects would have been destroyed
without the optimization. […]

—(1.1) in a return statement in a function with a class or array return type […] the copy/move operation(s)
can be omitted by constructing the automatic object or array elements directly into the function call’s
return object

5.7 Wording cleanup
Changes to [temp.deduct] p11 sub 10

(11.10) Attempting to create a function type in which a parameter has a type of void, or in which the return type
is a function type or array type.

6 Acknowledgements
Thanks to Agustín Bergé, Peter Dimov, Vinnie Falco, Will Wray, and all others who discussed this in the
CppLang Slack.

7 References
[P0593R5] Richard Smith. 2019. Implicit creation of objects for low-level object manipulation.

https://wg21.link/p0593r5

8

https://wg21.link/p0593r5

	Abstract
	Motivation
	Proposal
	Initialization
	Assignment
	Array return types
	Pseudo-destructors
	Placeholder type deduction
	Impact

	Design choices
	Assignment and initialization
	Placeholder type deduction
	Pseudo-destructors

	Wording
	Allow array assignment
	Allow array initialization
	Allow pseudo-destructor calls for arrays
	Allow returning arrays
	Deducing arrays with auto
	Copy elision for arrays
	Wording cleanup

	Acknowledgements
	References

