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1 Introduction [intro]
“Every time someone asks why we didn’t cover <numeric> and <memory> algorithms: We thought
187 pages of TS was enough.”

—Casey Carter

1.1 Motivation [intro.motivation]
N3351[17] served as the basis for the Ranges TS[15], which was merged into the C++20 Working Paper[12][13].
N3351 focused on defining concepts for the standard library, which is achieved by looking at the use-cases
that concepts are designed for: generic algorithms. Specifically, N3351 looked at pinning down the concepts
relevant to the algorithms found in <algorithm> after C++11. All known bodies of work from N4128[14]
through to P0896 and P0898 — with the exception of P1033[11] — have continued to focus on studying
and refining the contents of <algorithm>. P1033 takes the extremely low-hanging fruit and adds the
uninitialised-memory algorithms from <memory> to the mix. To the author’s best knowledge, all that’s left to
be added are possibly a few algorithms introduced in C++20, and all of the algorithms in <numeric>.
The numeric algorithms weren’t abandoned or forgotten: given the limited resources, there simply wasn’t
enough time to study all of the algorithms in <algorithm> and <numeric>, and also introduce the basis for
range adaptors in C++20. Now that we’re moving into the C++23 design space, we should start reviewing the
numeric algorithms in the same light as N3351 considered the <algorithm> algorithms.
A complete design is not as simple as taking the concepts introduced in P0896, slapping them on the numeric
algorithms, and calling it a day. These algorithms have different requirements to those in <algorithm>, and
P1813 takes aim at what those might look like. The current revision chooses to focus on only those algorithms
introduced in C++98 and reduce; the remaining C++17 numeric algorithms are left to a subsequent revision.

1.2 Design ideals [intro.design.ideals]
The following section has been lifted almost completely verbatim from N3351. This serves as a reminder
that the design ideals have not really changed since N3351’s publication in 2012. Non-editorial changes are
represented by showing what is present in N3351and what is present in P1813.

1. The concepts for the STL must be mathematically and logically sound. By this, we mean to emphasise
the fact that we should be able to reason about properties of programs (e.g. correctness) with respect
to the semantics of the language and the types used in those programs.

2. The concepts used should express general ideas in the application domain (hence the name ‘concepts’)
rather than mere programming language artifacts. Thinking about concepts as a yet another ‘contract’
language can lead to partially formed ideas. Contracts force programmers to think about requirements
on individual functions or interfaces, whereas concepts should represent fully formed abstractions.

3. The concepts should specify both syntactic and semantic requirements (“concepts are all about semantics”
— Alex Stepanov). A concept without semantics only partially specifies an interface and cannot be
reasoned about; the absence of semantics is the opposite of soundness (“it is insanity” — Alex Stepanov).

4. Symbols and identifiers should be associated with their conventional meanings. Overloads should have
well defined semantics and not change the usual meaning of the symbol or name.

5. The concepts as used to specify algorithms should be terse and readable. An algorithm’s requirements
must not restate the syntax of its implementation.

6. The number of concepts used should be low, in order to make them easier to understand and remember.
7. An algorithm’s requirements must not inhibit the use of very common code patterns in its implementa-

tion.
8. An algorithm should not contain requirements for syntax that it does not use, thereby unnecessarily

limiting its generality.
9. The STL with concepts should be compatible with C++11C++20, except where that compatibility

would imply a serious violation of one of the first two aims.
The following quote has also been extracted from N3351.
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“Every generic library design must choose the style in which it describes template requirements.
The ways in which requirements are specified has a direct impact on the design of the concepts
used to express them, and (as always) there are direct consequences of that choice. For example,
we could choose to state template requirements in terms of the exact syntax requirements of the
template. This leads to concept designs that have large numbers of small syntactic predicates
(e.g. HasPlus, HasComma, etc.). The benefit of this style of constraint is that templates are more
broadly adaptable: there are potentially more conforming types with which the template will
interoperate. On the downside, exact requirements tend to be more verbose, decreasing the
likelihood that the intended abstraction will be adequately communicated to the libraryâĂŹs
users. The C++0x design is, in many aspects, a product of this style.
On the other end of the spectrum, we could choose to express requirements in terms of the required
abstraction instead of the required syntax. This approach can lead to (far) fewer concepts in the
library design because related syntactic requirements are grouped to create coherent, meaningful
abstractions. Requirements can also be expressed more tersely, needing fewer concepts to express
a set of requirements that describe how types are used in an algorithm. The use of abstract
concepts also allows an algorithm to have more conforming implementations, giving a library
author an opportunity to modify (i.e. maintain) a template’s implementation without impacting
its requirements. The obvious downside to this style is that it over-constrains templates; there
may be types that conform to a minimal set of operations used by a template, but not the full
set of operations required by the concept. The concepts presented in Elements of Programming
approach this end of the spectrum.”

Similarly to N3351, P1813 aims to hold itself in-between these two extremes.

1.3 Organisation [intro.organisation]
Similarly to N3351, P1813 is broken into a section for declaring algorithms with concept requirements, and
a section for defining concepts. This document is intended to be read in sequentially, with many sections
depending on exposition from previous sections.
Unlike N3351, P1813 does not introduce concept definitions at their first point-of-use: it instead sequentially
defines them in the pre-wording-but-looks-like-wording Clause 3. P1813 also contains an appendix for proving
mathematical assertions.

1.4 Assumed knowledge [intro.assumed.knowledge]
The following sections assume familiarity with the concepts library ([concepts]), the iterator concepts
([iterator.concepts]), the indirect callable requirements ([indirectcallable]), the common algorithm requirements
([alg.req]), the range requirements ([range.req]), and the way in which algorithms are specified in namespace
std::ranges ([algorithms]).
Readers should consult Design of concept libraries for C++[18] prior to reading the remainder of P1813.
Readers are also encouraged to consult Elements of Programming[16] and N3351 as necessary.

1.5 Implementation [intro.implementation]
This design has partially been implemented in cmcstl2. The original design and the ideas articulated in this
document have slightly diverged, but not to the point where the author is convinced that the design has
become un-implementable.
The author also hopes to implement this in range-v3 for broader coverage.

1.6 Target vehicle [intro.target.vehicle]
P1813 targets C++23.

1.7 Acknowledgements [intro.acknowledgements]
The author would like to thank Andrew Sutton, Ben Deane, Nicole Mazzuca, Nathaniel Shead, and Steve
Downey reviewing this document, and providing valuable feedback. The author would also like to thank
Arien Judge for reviewing the proofs in Annex 4.
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2 Algorithms [algorithms]
“We start with algorithms because it is algorithms we want to specify cleanly, precisely, completely,
and readably. If we can specify algorithms well, our concepts and the language mechanisms we use
to specify the concepts are adequate. If not, no amount of sophistication in language mechanisms
will help us.”

—N3351, §2

“Generic Programming pro tip: Although Concepts are constraints on types, you don’t find them
by looking at the types in your system. You find them by studying the algorithms.”

—Eric Niebler, Twitter

2.1 Where do the numeric algorithms belong? [algorithms.home]
The numeric algorithms have lived in <numeric> since the original implementation of STL, yet many
developers frequently question why they are not found in <algorithm>. With standard module units on
the horizon, it might seem pointless to discuss the validity of choosing to separate the numeric algorithms
from the rest of their kin. This section aims to provide some guidance for when the Library Evolution group
ultimately drafts the design for which entities reside in what module units.
[Note to reviewers: This section is pending reviewer input. ]

2.2 Sequenced numeric algorithms [algorithms.sequenced]
The ‘sequenced numeric algorithms’ are the algorithms found in <numeric>, introduced in the STL; most of
which made their way into C++98. This family of algorithms performs computations in a sequential manner,
from left-to-right, or from the first element in the sequence to the last. For some binary operation bop, and
two expressions x and y, the expression bop(x, y) need only be equality-preserving ([concepts.equality]); the
expression bop(x, y) doesn’t need to be associative, nor does it need to be commutative. That is, bop(x,
bop(y, z)) is not required to return the same result as bop(bop(x, y), z), and bop(x, y) does not need
to return the same result as bop(y, x).

1 [Example: Addition is an associative operation: 1 + (2 + 3) = 6 and (1 + 2) + 3 = 6 also. Subtraction is not
an associative operation: 1− (2− 3) = 2 and (1− 2)− 3 = −4. —end example ]

2 [Example: Addition is an commutative operation: 1 + 2 = 3 and 2 + 1 = 3 also. Subtraction is not a
commutative operation: 1− 2 = −1 and 2− 1 = 1. —end example ]

3 [Note: An operation does not need to be both associative and commutative; nor does it need to be neither.
[Example: Matrix multiplication is associative, but not commutative[19]. —end example ] —end note ]

2.2.1 Accumulate [algorithms.accumulate]
accumulate is an algorithm that performs a fold operation, or in other words, takes a sequence of values and
reduces them into a single value according to some operation. This is a generalisation of a summation. The
algorithm — modelled after what’s currently in the International Standard — has a fairly straightforward
declaration.

template<input_iterator I, sentinel_for<I> S, movable T, class Proj = identity,
indirect_magma<const T*, projected<I, Proj>, T*> BOp = ranges::plus>

constexpr accumulate_result<I, T>
accumulate(I first, S last, T init, BOp bop = {}, Proj proj = {});

template<input_range R, movable T, class Proj = identity,
indirect_magma<const T*, projected<iterator_t<R>, Proj>, T*> BOp = ranges::plus>

constexpr accumulate_result<safe_iterator_t<R>, T>
accumulate(R&& r, T init, BOp bop = {}, Proj proj = {});

1 A magma is a binary operation bop over a set of elements S, where the result of bop(x, y) is also in
the set, or alternatively, bop is closed under S[2]. Because different types may represent the same set of
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elements (e.g. all of int, long long, and double can be used to represent a subset of integers), BOp
does not need to be a homogeneous binary operation. For equational reasoning purposes, the types
are expected to have a common type, and so bop(0, vector0) does not model a magma. Similarly,
bop(x, y), where x and y are possibly different types is expected to share a type common to both x
and y. The type of bop(x, y) must be the same as the type of bop(y, x). magma also requires BOp
to model regular_invocable. Finally, a magma is only concerned with closure: they do not impose
any requirements on associativity, nor on commutativity, so although the types of bop(x, y) and
bop(y, x) need to match, there is no requirement for their values to match.

It might also be nice to use accumulate without an initial value, similarly to C++17’s std::reduce ([reduce]).
It would certainly be convenient to use accumulate(r) or even accumulate(r, ranges::times{}), where
r is an arbitrary range, and ranges::times is a modernisation of std::multiplies. The former is fairly
trivial to do: we can default init = T{} and call it a day, just as std::reduce has, but the author feels
that this is lacking. An ideal init-less accumulate should permit the caller to specify a range, optionally an
operation, and optionally a projection. This requires great care, because accumulate(r, times{}) when
init = T{} would always produce a single result: T{} (recall that T{} is equivalent to zero for fundamental
types). The reasons for why this is not desirable should be obvious.
By instead choosing an appropriate way to represent an operation’s identity element, accumulate(r, bop,
proj) becomes a viable candidate to add to our overload set. An identity element id is an element in a
set S, where x · id is equivalent to x, or id · x is equivalent to x. x · id is called a right-identity, because
id is on the right-hand-side of x, and id · x is called a left-identity. When id is both a left-identity and a
right-identity, we call it a two-sided identity[6] (mathematicians should note that std::identity is a function
object ([func.identity])).

2 [Example: 0 is the two-sided identity element for addition of real numbers: x+ 0 = x = 0 + x = x. —end
example ]

3 [Example: 1 is the two-sided identity element for multiplication of real numbers: 1(x) = x = x(1) = x. —end
example ]
With an interface that requires a two-sided identity, we can now declare our additions to the accumulate
overload set.

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_monoid<projected<I, Proj>, projected<I, Proj>,

iter_value_t<projected<I, Proj>>*> BOp = ranges::plus>
requires movable<iter_value_t<projected<I, Proj>>>

constexpr accumulate_result<I, iter_value_t<projected<I, Proj>>>
accumulate(I first, S last, BOp bop = {}, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_monoid<projected<iterator_t<R>, Proj>,

projected<iterator_t<R>, Proj>,
iter_value_t<projected<iterator_t<R>, Proj>>* = ranges::plus>

requires movable<iter_value_t<projected<iterator_t<R>, Proj>>>
constexpr accumulate_result<safe_iterator_t<R>, iter_value_t<projected<iterator_t<R>, Proj>>>

accumulate(R&& r, BOp bop = {}, Proj proj = {});

A monoid is a twice-removed refinement over magma: it requires BOp be an associative operation (this
is a semigroup[9]), and it requires that BOp have a two-sided identity element[7]. How this is achieved is
covered later, but it is a good idea to note now that the notion of identities are defined using a new
set of traits (numeric traits). This overload subset designates the return type to be the same as the
iterator’s value type, so the requirement for T to be movable must be moved appropriately.

2.2.2 Partial sum [algorithms.partial.sum]
In mathematics, a partial sum is a summation of the first N elements of a sequence[20].

SN =
N−1∑
k=0

ak

The C++ algorithm partial_sum is a generalisation of a partial sum, which writes the kth evaluation of
accumulate to an output range. The interface is extremely similar to that of accumulate.
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template<input_iterator I, sentinel_for<I> S1, weakly_incrementable O, sentinel_for<O> S2,
class Proj = identity,
indirect_magma<projected<I, Proj>, projected<I, Proj>, O> BOp = ranges::plus>

requires indirectly_copyable_storable<I, O>
constexpr partial_sum_result<I, O>

partial_sum(I first, S1 last, O result, S2 result_last, BOp bop = {}, Proj proj = {});

template<input_range R, range O, class Proj = identity,
indirect_magma<projected<iterator_t<R>, Proj>,

projected<iterator_t<R>, Proj>,
iterator_t<O>> BOp = ranges::plus>

requires indirectly_copyable_storable<iterator_t<I>, iterator_t<O>>
constexpr partial_sum_result<safe_iterator_t<R>, safe_iterator_t<O>>

partial_sum(R&& r, O&& result, BOp bop = {}, Proj proj = {});

Unlike accumulate, partial_sum doesn’t require an initial value: it instead designates invoke(proj,
*first) as the initial value. partial_sum requires its binary operation model a magma over its projected
input range for the same reasons as accumulate. The output of partial_sum’s value-type must be copyable,
and movable via a cache ([alg.req.ind.copy]).
[Note to reviewers: The above paragraph is poorly worded. Input on how to rephrase is appreciated. ]
To minimise the likelihood of writing to a beyond an output range that is smaller than the input range, both
overloads have been slightly altered to take two full ranges instead of a range-and-a-half. The range-and-a-half
overloads can be emulated using unreachable_t.

2.2.3 Adjacent difference [algorithms.adjacent.difference]
adjacent_difference is a specialised transformation over adjacent elements in an input range to compute
the inverse of a partial_sum (4.1). This yields some interesting properties about adjacent_difference’s
requirements, as shown below.

template<input_iterator I, sentinel_for<I> S1, weakly_incrementable O, sentinel_for<O> S2,
class Proj = identity,
indirect_loop<projected<I, Proj>, projected<I, Proj>, O> BOp = ranges::minus>

requires requires indirectly_copyable_storable<I, O>
constexpr adjacent_difference_result<I, O>

adjacent_difference(I first, S1 last, O result, S2 result_last, BOp bop = {}, Proj proj = {});

template<input_range R, range O, class Proj = identity,
indirect_loop<projected<iterator_t<R>, Proj>,

projected<iterator_t<R>, Proj>,
iterator_t<O>> BOp = ranges::minus>

requires indirectly_copyable_storable<iterator_t<I>, iterator_t<O>>
constexpr adjacent_difference_result<safe_iterator_t<R>, safe_iterator_t<O>>

adjacent_difference(R&& r, O&& result, BOp bop = {}, Proj proj = {});

1 A loop is another twice-removed refinement over a magma. Specifically, it requires that the binary
operation have an inverse operation (this is a quasigroup[8]), and a two-sided identity. It is necessary
for adjacent_difference to require a loop, so that we can guarantee that it is the inverse algorithm
of partial_sum.
It’s important to note that despite appearing to have similar use-cases, both the the interface and
implementation for adjacent_difference are distinct from transform ([alg.transform]):

Varying interface adjacent_difference requires that its binary operation model regular_invocable
([concept.regularinvocable]), while transform only requires its binary operation model invocable
([concept.invocable]) ([indirectcallable.indirectinvocable]).

Varying implementation transform applies its operands in the order of left-to-right, à la op(*first1,
*first2), while adjacent_difference applies its operands in the opposite order, à la bop(prev,
*first).

[Note to reviewers: Despite loop being the technical term for this algebraic structure, the author does not
encourage the using the name loop directly, due to the likelihood of it being confused with the computer
science term ‘loop’. See 3.2.6 for possible alternative (ugly) names, and 3.2.7 for a possible (and preferred)
redesign. ]
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2.2.4 Inner Product [algorithms.inner.product]
inner_product generalises an algebraic inner product into a map-reduce operation.

template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
movable T, class Proj1 = identity, class Proj2 = identity,
class BOp1 = ranges::plus, class BOp2 = ranges::times>

requires indirect_weak_magmaring<BOp1, BOp2, const T*,
projected<I1, Proj1>, projected<I2, Proj2>, T*>

constexpr inner_product_result<I1, I2, T>
inner_product(I1 first1, S1 last1, I2 first2, S2 last2, T init,

BOp1 bop1 = {}, BOp2 bop2 = {}, Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, class BOp1 = ranges::plus, class BOp2 = ranges::times,
movable T, class Proj1 = identity, class Proj2 = identity>

requires indirect_weak_magmaring<BOp1, BOp2, const T*,
projected<iterator_t<R1>, Proj1>,
projected<iterator_t<R2>, Proj2>, T*>

constexpr inner_product_result<safe_iterator_t<R1>, safe_iterator_t<R2>, T>
inner_product(R1&& r1, R2&& r2, T init, BOp1 bop1 = {}, BOp2 bop2 = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

1 A weak_magmaring is an extreme generalisation of the well-known semiring algebraic structure that
establishes a relationship between two magmas. Specifically, it describes that a magma BOp2 is
distributive over BOp1. Given three objects of possibly distinct — but related — types, x, y, and z, the
expression bop2(x, bop1(y, z)) is equivalent to bop1(bop2(x, y), bop2(x, z)).

2 [Example: Multiplication is distributive over addition: x(y + z) = xy + yz. —end example ]
3 Mathematicians note that weak-magmaring is a generalisation of a near-semiring, named by the author,

to fit the requirements. The author asked around on StackExchange[10] before naming this algebraic
structure, but it seems that the structure is too general to be of interest outside of this use-case. The
naming decision stems from that fact that a near-semiring weakens (S, ·) from a monoid to a semigroup,
and a weak-magmaring weakens (S, ·) from a semiring to a magma. A more appropriate name might
exist: near-semirings still require (S,+) to model a monoid, but a near-magma weakens this requirement
to a magma as well.

4 Similarly to adjacent_difference, inner_product is not quite the same as C++17’s transform_-
reduce, which is expected to be far more permissive with its operations.

Care has been taken to ensure that inner_product is not over-constraining, and that only types that directly
interact are required to have a common type. This means the following code doesn’t meet the requirements
for inner_product.

auto words_to_ints = [](string_view const word) -> int {
// ...

};
auto const data1 = vector{"one"s, "two"s, "three"s, "four"s, "five"s};
auto const data2 = vector{"six"s, "seven"s, "eigth"s, "nine"s, "ten"s};
return inner_product(data1, data2, 0, ranges::plus{}, words_to_ints);
// error: words_to_ints doesn’t model magma<string, string>, since
// common_with<invoke_result_t<words_to_ints, string, string>, int> is false.

A user that wants to perform this operation should instead use the following:
auto as_words = view::transform(words_to_ints);
return accumulate(view::zip_with(data1 | as_words, data2 | as_words, ranges::times{}));

[Note to reviewers: The author painfully is aware that zip_with_view is yet to be standardised: this
use-case exasperates the need for such a library feature. ]
Similarly to accumulate, by refining our requirements, it’s possible to eliminate the need for an initial value,
thereby making this possible:

auto ints = view::iota(0);
auto slice = [](auto const drop, auto const take) {

return view::drop(drop) | view::take(take);
};
return inner_product(ints | slice(100, 10), ints | slice(10, 10));
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template<input_iterator I1, sentinel_for<I1> S1, input_iterator I2, sentinel_for<I2> S2,
class BOp1 = ranges::plus, class BOp2 = ranges::times,
class Proj1 = identity, class Proj2 = identity>

requires indirect_near_semiring<BOp1, BOp2,
const iter_value_t<projected<I1, Proj1>>*,
projected<I1, Proj1>,
projected<I2, Proj2>,
iter_value_t<projected<I1, Proj1>>*>

constexpr inner_product_result<I1, I2, iter_value_t<projected<I1, Proj1>>>
inner_product(I1 first1, S1 last1, I2 first2, S2 last2, BOp1 bop1 = {}, BOp2 bop2 = {},

Proj1 proj1 = {}, Proj2 proj2 = {});

template<input_range R1, input_range R2, class Proj1 = identity, class Proj2 = identity,
class BOp1 = ranges::plus, class BOp2 = ranges::times>

requires indirect_near_semiring<BOp1, BOp2,
const iter_value_t<projected<iterator_t<R1>, Proj1>>*,
projected<iterator_t<R1>, Proj1>,
projected<iterator_t<R2>, Proj2>,
iter_value_t<projected<iterator_t<R1>, Proj1>>*>

constexpr inner_product_result<safe_iterator_t<R1>, safe_iterator_t<R2>,
iter_value_t<projected<iterator_t<R1>, Proj1>>>

inner_product(R1&& r1, R2&& r2, BOp1 bop1 = {}, BOp2 bop2 = {},
Proj1 proj1 = {}, Proj2 proj2 = {});

A near-semiring is a refinement of a weak-magmaring, and naturally arises from studying functions on
monoids[1]. A near-semiring requires that BOp1 model a monoid, and that BOp2 model a semigroup. As a
near-semiring refines a weak-magmaring, it subsumes the distributive property. It also introduces the notion
of an annhiliating element[4]. In mathematics, an annihilating element is a special element in a set for certain
operations, such that when applied with any other element in the set, the result of the operation is the
annihliating element. It is the complete opposite of an identity element.
[Example: Scalar multiplication’s annihilating element is 0: 0x = 0 and x0 = 0. —end example ]
Semigroup theory refers to annihilating elements as the zero element, as there is only one notion of zero.
[Note to reviewers: While a zero element is not strictly a necessity for inner_product, it is a fundamental
property of a near-semiring, and so it has been included in the requirements for a near_semiring. ]

2.2.5 Iota [algorithms.iota]
[Note to reviewers: As the C++20 WP contains iota_view, it is unclear to the author whether or not there
is a place for an algorithm iota. This subsection will be filled out, either in favour or against, after receiving
guidance. ]

2.2.6 Power [algorithms.power]
[Note to reviewers: While reviewing the history of the original STL implementation, the author noted that
there existed an extension algorithm called power. The current revision of this document does not explore
this algorithm, but a future revision may. ]

2.3 Unsequenced numeric algorithms [algorithms.unsequenced]
The ‘unsequenced numeric algorithms’ are the <numeric> algorithms introduced in C++17. These are a
further generalisation of the sequenced numeric algorithms, and may perform computations out-of-order.
As such, in order to guarantee equality-preservation, these algorithms will require their operations be both
associative and commutative.

2.3.1 Reduce [algorithms.reduce]
reduce is the unsequenced counterpart to accumulate. Its declaration is fairly similar to that of accumulate,
except for the refinements introduced by this section.

template<input_iterator I, sentinel_for<I> S, movable T, class Proj = identity,
indirect_commutative_semigroup<const T*, projected<I, Proj>, T*> BOp = ranges::plus>

constexpr reduce_result<I, T>
reduce(I first, S last, T init, BOp bop = {}, Proj proj = {});
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template<input_range R, movable T, class Proj = identity,
indirect_commutative_semigroup<const T*,

projected<iterator_t<R>, Proj>, T*> BOp = ranges::plus>
constexpr reduce_result<safe_iterator_t<R>, T>

reduce(R&& r, T init, BOp bop = {}, Proj proj = {});

template<input_iterator I, sentinel_for<I> S, class Proj = identity,
indirect_commutative_monoid<projected<I, Proj>, projected<I, Proj>,

iter_value_t<projected<I, Proj>>*> BOp = ranges::plus>
requires movable<iter_value_t<projected<I, Proj>>>
constexpr reduce_result<I, iter_value_t<projected<I, Proj>>>

reduce(I first, S last, BOp bop = {}, Proj proj = {});

template<input_range R, class Proj = identity,
indirect_commutative_monoid<projected<iterator_t<R>, Proj>,

projected<iterator_t<R>, Proj>,
iter_value_t<projected<iterator_t<R>, Proj>>* = ranges::plus>

requires movable<iter_value_t<projected<iterator_t<R>, Proj>>>
constexpr reduce_result<safe_iterator_t<R>, iter_value_t<projected<iterator_t<R>, Proj>>>

reduce(R&& r, BOp bop = {}, Proj proj = {});

commutative_semigroup and commutative_monoid respectively refine semigroup and monoid so that BOp
is a commutative operation. This is achieved by introducing a commutative_operation concept, which
requires that for two distinct values x and y, bop(x, y) is has same result as bop(y, x).
[Note to reviewers: This document does not yet define the concepts commutative_semigroup and co, but
one can ‘imagine’ them being equivalent to semigroup<T, U> && commutative_operation<T, U>, etc. ]

2.3.2 Inclusive scan [algorithms.inclusive.scan]
This revision does not explore the requirements for inclusive_scan.

2.3.3 Exclusive scan [algorithms.exclusive.scan]
This revision does not explore the requirements for exclusive_scan.

2.3.4 Transform reduce [algorithms.transform.reduce]
This revision does not explore the requirements for transform_reduce.

§ 2.3.4 8



© ISO/IEC P1813R0

3 Algorithm support [support]
“Generic Programming pro tip #2: The "basis operations" of a well-designed concept or concept
hierarchy is the minimal set of operations that are both sufficient and necessary for efficiently
implementing all algorithms of interest within a particular domain.”

—Eric Niebler, Twitter

The following subsections articulate the concept designs and any supporting material (such as traits).
[Note to reviewers: This section’s ‘wording’ is not intended to be reviewed for wording (hence why the
chapter isn’t titled ‘Proposed Wording’). ]

3.1 Numeric traits [support.traits]
This section provides exposition for the traits that are used by algebraic concepts. The author is aware that
the design is not necessarily the most appropriate, and is open to suggestions for improvement.

3.1.1 Identity traits [support.traits.identity]
1 An identity element id is a special element in a set S, such that for all other elements x in S, given a magma
·, at least one of x · id = x or id · x = x holds.

2 If both x · id = x and id · x = x hold, then id is unique (4.2).

3.1.1.1 Left identity [support.traits.identity.left]
1 left_identity is a type that represents the notion of a left-identity.

namespace std {
template<class BOp, class T, class U = T>
struct left_identity {};

template<class BOp, class T, class U = T>
using left_identity_t = decltype(declval<left_identity<BOp, T, U>>()());

}

2 A program may specialise left_identity, as described in the example below. No diagnostic is required
for specialisations that do not follow this implementation. No diagnostic is required for explicit
specialisations of the template parameters T or U. [Example:

struct binary_op {
int operator()(int, int) const;

};

namespace std {
template<class T, class U>
requires magma<binary_op, T, U>
struct left_identity<binary_op, T, U> {

constexpr common_type_t<T, U> operator()() const
{ /∗ implementation−defined ∗/ }

};
}

—end example ]

3.1.1.2 Right identity [support.traits.identity.right]
1 right_identity is a type that represents the notion of a right-identity.

namespace std {
template<class BOp, class T, class U = T>
struct right_identity {};
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template<class BOp, class T, class U = T>
using right_identity_t = decltype(declval<right_identity<BOp, T, U>>()());

}

2 A program may specialise right_identity, as described in the example below. No diagnostic is
required for specialisations that do not follow this implementation. No diagnostic is required for explicit
specialisations of the template parameters T or U. [Example:

struct binary_op {
int operator()(int, int) const;

};

namespace std {
template<class T, class U>
requires magma<binary_op, T, U>
struct right_identity<binary_op, T, U> {

constexpr common_type_t<T, U> operator()() const
{ /∗ implementation−defined ∗/ }

};
}

—end example ]

3.1.1.3 Two-sided identity [support.traits.identity.two.sided]
1 two_sided_identity is a type that represents the notion of a two-sided identity.

namespace std {
template<class BOp, class T, class U>
concept has-two-sided-identity = // exposition only

requires(BOp bop, const T& t, const U& u) {
typename left_identity_t<BOp, T, U>;
typename left_identity_t<BOp, U, T>;
typename right_identity_t<BOp, T, U>;
typename right_identity_t<BOp, U, T>;

requires same_as<left_identity_t<BOp, T, U>, left_identity_t<BOp, U, T>>;
requires same_as<right_identity_t<BOp, T, U>, right_identity_t<BOp, U, T>>;
requires same_as<left_identity_t<BOp, T, U>, right_identity_t<BOp, T, U>>;

};
}

2 Let left1 be an object of type left_identity<BOp, T, U>, left2 be an object of type left_-
identity<BOp, U, T>, right1 be an object of type right_identity<BOp, T, U>, and right2 be an
object of type right_identity<BOp, U, T>.

3 The expressions left1() == left2(), right1() == right2(), and left1() == right1() are all
true.

4 If t != left1() is true and u != right1() is true, then the expressions t == invoke(bop, t,
right()) and u == invoke(bop, left(), u) are both true.

template<class BOp, class T, class U = T>
requires has-two-sided-identity <BOp, T, U>
struct two_sided_identity {

constexpr common_type_t<T, U> operator()() const;
};

template<class BOp, class T, class U>
using two_sided_identity_t =

decltype(two_sided_identity{}(declval<BOp&>(), declval<T>(), declval<U>()));

constexpr common_type_t<T, U> operator()(BOp bop, T&& t, U&& u) const;

5 Expects: left_identity<BOp, T, U>() == right_identity<BOp, T, U>() is true.
6 Effects: Equivalent to:
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return left_identity<BOp, T, U>{}();

3.1.2 Zero traits [support.traits.zero]
1 A zero element z is a special element in a set S, such that for all other elements x in S, given a magma ·, at

least one of x · z = z or z · x = z holds.
2 If both x · z = z and z · x = z hold, then z is unique (4.3).

3.1.2.1 Left zero [support.traits.zero.left]
1 left_zero is a type that represents the notion of a left-zero.

namespace std {
template<class BOp, class T, class U = T>
struct left_zero {};

template<class BOp, class T, class U = T>
using left_zero_t = decltype(declval<left_zero<BOp, T, U>>()());

}

2 A program may specialise left_zero, as described in the example below. No diagnostic is required
for specialisations that do not follow this implementation. No diagnostic is required for explicit
specialisations of the template parameters T or U. [Example:

struct binary_op {
int operator()(int, int) const;

};

namespace std {
template<class T, class U>
requires magma<binary_op, T, U>
struct left_zero<binary_op, T, U> {

constexpr common_type_t<T, U> operator()() const
{ /∗ implementation−defined ∗/ }

};
}

—end example ]

3.1.2.2 Right zero [support.traits.zero.right]
1 right_zero is a type that represents the notion of a right-zero.

namespace std {
template<class BOp, class T, class U = T>
struct right_zero {};

template<class BOp, class T, class U = T>
using right_zero_t = decltype(declval<right_zero<BOp, T, U>>()());

}

2 A program may specialise right_zero, as described in the example below. No diagnostic is required
for specialisations that do not follow this implementation. No diagnostic is required for explicit
specialisations of the template parameters T or U. [Example:

struct binary_op {
int operator()(int, int) const;

};

namespace std {
template<class T, class U>
requires magma<binary_op, T, U>
struct right_zero<binary_op, T, U> {

constexpr common_type_t<T, U> operator()() const
{ /∗ implementation−defined ∗/ }

};
}
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—end example ]

3.1.2.3 Two-sided zero [support.traits.zero.two.sided]
1 two_sided_zero is a type that represents the notion of a two-sided zero.

namespace std {
template<class BOp, class T, class U>
concept has-two-sided-zero = // exposition only

requires(BOp bop, const T& t, const U& u) {
typename left_zero_t<BOp, T, U>;
typename left_zero_t<BOp, U, T>;
typename right_zero_t<BOp, T, U>;
typename right_zero_t<BOp, U, T>;

requires same_as<left_zero_t<BOp, T, U>, left_zero_t<BOp, U, T>>;
requires same_as<right_zero_t<BOp, T, U>, right_zero_t<BOp, U, T>>;
requires same_as<left_zero_t<BOp, T, U>, right_zero_t<BOp, T, U>>;

};
}

2 Let left1 be an object of type left_zero<BOp, T, U>, left2 be an object of type left_zero<BOp,
U, T>, right1 be an object of type right_zero<BOp, T, U>, and right2 be an object of type right_-
zero<BOp, U, T>.

3 The expressions left1() == left2(), right1() == right2(), and left1() == right1() are all
true.

4 If t != left1() is true and u != right1() is true, then the expressions right1() == invoke(bop,
t, right1()) and left1() == invoke(bop, left1(), u) are both true.

template<class BOp, class T, class U>
requires has-two-sided-zero <BOp, T, U>
struct two_sided_zero {

constexpr common_type_t<T, U> operator()(BOp bop, T&& t, U&& u) const;
};

template<class BOp, class T, class U = T>
using two_sided_zero_t =

decltype(two_sided_zero{}(declval<BOp&>(), declval<T>(), declval<U>()));

constexpr common_type_t<T, U> operator()(BOp bop, T&& t, U&& u) const;

5 Expects: left_zero<BOp, T, U>() == right_zero<BOp, T, U>() is true.
6 Effects: Equivalent to:

return left_zero<BOp, T, U>();}

3.1.3 Inverse traits [support.traits.inverse]
[Note to reviewers: The design for inverse_traits needs to be thoroughly revised, as it is overly restrictive,
incomplete, and wrong. ]

1 inverse_traits denotes a type that takes an object modelling a magma over an arbitrary domain as input,
and returns an object whose type models a magma over the same domain, where the returned object is the
mathematical inverse operation of the input.

template<class BOp>
struct inverse_traits {};

template<class BOp>
using inverse_operation_t = typename inverse_traits::type;

2 Users may specialise this type, provided it is equivalent to:
struct plus;
struct minus;

§ 3.1.3 12



© ISO/IEC P1813R0

namespace std {
template<>
struct inverse_traits<plus> {

using type = minus;
constexpr type operator()() const { return type{}; }

};

template<>
struct inverse_traits<minus> {

using type = plus;
constexpr type operator()() const { return type{}; }

};
}

3 Let x be an object of type T, y be an object of type U, bop be an object of type BOp, where BOp models
magma<T, U>, and inv be an object of type Inv, where Inv models magma<T, U>.

4 Mandates:
—(4.1) If is_same_v<inverse_type_t<BOp>, Inv> is true, then is_same_v<inverse_type_t<Inv>,

BOp> is also true, no diagnostic required.
—(4.2) is_same_v<inverse_type_t<BOp>, BOp> is false, no diagnostic required.

5 Expects:
—(5.1) invoke(inv, invoke(bop, x, y), y) == x is true.
—(5.2) invoke(inv, invoke(bop, x, y), x) == y is true.

[Note to reviewers: This type could be relaxed to permit the inverse of other operations. For example, the
inverse of −x is −(−x), and the inverse of swap(x, y) is swap(x, y). ]

3.2 Algebraic concepts [support.concepts]
This section describes the concepts required by the numeric algorithms, and are not present in the C++20
standard library.

3.2.1 Concept commutative operation [support.concepts.commutative.op]
1 A commutative operation is a binary operation where the order of its operands does not change the evaluation

of the expression.
2 [Example: Integral arithmetic is commutative. —end example ]
3 [Example: Matrix multiplication is not commutative. —end example ]

template<class BOp, class T, class U>
concept commutative_operation =

regular_invocable<BOp, T, U> &&
regular_invocable<BOp, U, T> &&
common_with<T, U> &&
equality_comparable_with<T, U>;

4 Let bop be an object of type BOp, t be an object of type T, and u be an object of type U, where t != u.
5 The result of invoke(bop, t, u) is expression-equivalent to invoke(bop, u, t).

3.2.2 Concept magma [support.concepts.magma]
1 A magma is a set S associated with a binary operation ·, such that S is closed under ·.
2 [Example: (Z,+) is a magma, since we can add any two integers and find that the result is also an integer.
—end example ]

3 [Example: (Z, /) is not a magma, since 2
3 is not an integer. —end example ]

[Note to reviewers: The term semigroupoid is an older name for the notion of a magma, but this seems to
have been co-opted by category theory. ]
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template<class BOp, class T, class U>
concept magma =

common_with<T, U> &&
regular_invocable<BOp, T, T> &&
regular_invocable<BOp, U, U> &&
regular_invocable<BOp, T, U> &&
regular_invocable<BOp, U, T> &&
common_with<invoke_result_t<BOp&, T, U>, T> &&
common_with<invoke_result_t<BOp&, T, U>, U> &&
same_as<invoke_result_t<BOp&, T, U>, invoke_result_t<BOp&, U, T>>;

4 Let bop be an object of type BOp, t be an object of type T, and u be an object of type U.
5 The value invoke(bop, t, u) must return a result that is representable by common_type_t<T, U>.

The decision to require common types for a over magma<T, U> is similar to the reason that equality_-
comparable_with requires common_reference_with: this ensures that when an algorithm requires a magma,
we are able to equationally reason about those requirements. It’s possible to overload operator+(int,
vector<int> const&), but that doesn’t follow the canonical usage of +. Does 1 + vector{1, 2, 3}
mean ‘concatenate vector{1, 2, 3} to the end of a temporary vector{1}’? Is it a shorthand for
accumulate(vector{1, 2, 3}, 1)? The intention is unclear, and so std::plus<> (sic) should not model
magma<int, vector<int>>.
[Note to reviewers: This implies that the author is not a fan of + as a way of concatenating strings. It’s not
ideal, but since this is already a standard practice, the author has chosen not to — probably fruitlessly —
wage war on this specific case. ]
Similarly, if the result type is not related to its parameters, the operation lacks the ability to be equationally
reasoned about. While a programmer might have a good local reason to write a matrix multiplication
declared as mat16 operator*(mat4 const& x, mat4 const&), this does not adhere to the usual rules of
mathematics, and is out-of-scope for generic programming.

3.2.3 Concept semigroup [support.concepts.semigroup]
1 A semigroup (S, ·) refines the concept of a magma, by requiring · to be an associative binary operation.
2 [Example: (R,+) is a semigroup, since (1.2 + 2.3) + π = 1.2 + (2.3 + π). —end example ]
3 [Example: (R,−) is not a semigroup, since (1.2− 2.3)− π 6= 1.2− (2.3− π). —end example ]

template<class BOp, class T, class U>
concept semigroup = magma<BOp, T, U>;

4 Let bop be an object of type BOp, t be an object of type T, and u be an object of type U.
5 invoke(bop, t, invoke(bop, t, u)) is expression-equivalent to invoke(bop, invoke(bop, t, u),

u).
6 [Note: The difference between magma and semigroup is purely semantic. —end note ]

3.2.4 Concept monoid [support.concepts.monoid]
1 A monoid (S, ·) refines the concept of a semigroup by requiring · to have a two-sided identity element.

template<class BOp, class T, class U = T>
concept monoid = semigroup<BOp, T, U> && requires {

typename two_sided_identity_t<BOp, remove_cvref_t<T>, remove_cvref_t<U>>;
};

3.2.5 Concept quasigroup [support.concepts.quasigroup]
1 A quasigroup (S, ·) refines the concept of a magma by requiring · have an inverse operation.

[Example: (Z,+) is a quasigroup, since subtraction is the inverse operation of addition. —end example ]
[Example: (Z, rem) is not a quasigroup, since there is no inverse operation for remainder. —end example ]

template<class BOp, class T, class U>
concept quasigroup = magma<BOp, T, U> and requires {

typename inverse_operation_t<BOp, T, U>;
typename inverse_operation_t<inverse_operation_t<BOp, T, U>, T, U>;
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requires same_as<BOp, inverse_operation_t<inverse_operation_t<BOp, T, U>, T, U>>;
};

2 Let t be an object of type T, u be an object of type U, bop be an object of type BOp.
3 There exists an object inv of type Inv, where Inv models magma<T, U>, and the expressions

—(3.1) invoke(inv, invoke(bop, t, u), t) == u

—(3.2) invoke(inv, invoke(bop, t, u), u) == t

are both true. [Note: This implies that Inv also models quasigroup<T, U>, with respect to inv.
—end note ]

[Note to reviewers: The author wonders if having both semigroup and quasigroup will be confusing for
some people. The names associative_magma (for semigroup) and invertible_magma (for quasigroup)
have been considered as alternatives. ]

3.2.6 Concept loop [support.concepts.loop]
1 A loop (S, ·) refines the concept of a quasigroup by requiring · to have a two-sided identity element.

template<class BOp, class T, class U>
concept loop = quasigroup<BOp, T, U> && requires {

typename two_sided_identity_t<BOp, remove_cvref_t<T>, remove_cvref_t<U>>;
};

2 invoke(inv, t, invoke(bop, t, u)) is expression-equivalent to invoke(inv, two_sided_identity(bop,
t, u), t).

3 invoke(inv, u, invoke(bop, t, u)) is expression-equivalent to invoke(inv, two_sided_identity(bop,
t, u), u).

[Note to reviewers: To avoid confusion between computer science loops and abstract algebra loops, the
author is considering renaming loop to abstract_loop or algebraic_loop.

The solution should be considered for the notion of a module (for obvious reasons), ring (to avoid confusion
with types such as ring_buffer), and to a lesser extent, group (‘group’ is a very abstract term). This
proposal introduces neither a module concept, nor a ring concept (but it is plausible that a subsequent
paper propose these). ]

3.2.7 Concept group [support.concepts.group]
1 A group is a refinement of both a semigroup and a quasigroup[5].

template<class BOp, class T, class U>
concept group = semigroup<BOp, T, U> && quasigroup<BOp, T, U>;

[Note to reviewers: The author is open to simplifying the group heirarchy by following the design presented
in EoP, where a group refines a monoid by requiring inverse operation. This would eliminate the confusion
between ‘semigroup’ and ‘quasigroup’, and won’t introduce any concept-like diamond problems. ]

3.2.8 Concept abelian group [support.concepts.abelian.group]
1 A abelian group refines a group such that the operation is commutative[3].

template<class BOp, class T, class U>
concept abelian_group = group<BOp, T, U> && commutative_operation<BOp, T, U>;

[Note to reviewers: An alternative, and possibly more appropriate name for this concept is commutative_-
group. ]
[Note to reviewers: group and abelian_group are the only concepts introduced in this proposal that aren’t
required by an algorithm, but given their ‘simple’ definitions, it would be remiss to omit them. The same
cannot be said for the ring hierarchy, as there are more gaps between what is proposed in P1813 and the full
definition of a ring. ]

3.2.9 Concept weak-magmaring [support.concepts.weak.magmaring]
1 A weak-magmaring (S, ·) is a generalisation of the notion of a near-semiring, where:

—(1.1) (S,+) is a magma.
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—(1.2) (S, ·) is a magma.
—(1.3) · is distributive over +

—(1.3.1) a · (b+ c) = (a · b) + (a · c)
—(1.3.2) (a+ b) · c = (a · c) + (b · c)

[Note: In the definition of a weak-magmaring, + does not refer to canonical addition, and · does not refer to
canonical multiplication. —end note ]

template<class BOp1, class BOp2, class T, class U, class V>
concept weak_magmaring = magma<BOp2, U, V> && magma<BOp1, T, invoke_result_t<BOp2&, U, V>>;

2 Let bop1 be an object of type BOp1, bop2 be an object of type BOp2, t be an object of type T, u be an
object of type U, and v be an object of type V.

3 invoke(bop2, invoke(bop1, t, u), v) is expression-equivalent to invoke(bop1, invoke(bop2, t,
v), invoke(bop2, u, v)).

[Note to reviewers: This could be renamed as distributive_operation to avoid introducing novel
mathematical terms that lack rigourous definitions. The author is not convinced that the concept definition
needs to change for this renaming to be possible. ]

3.2.10 Concept near-semiring [support.concepts.near.semiring]
1 A near-semiring (S,+, ·) refines the notion of a weak-magmaring, by refining the substructures, and introducing

the notion of a two-sided zero element.
—(1.1) (S,+) is a monoid.
—(1.2) (S, ·) is a semigroup.
—(1.3) 0 · a = a · 0 = 0 for all a in S.

template<class BOp1, class BOp2, class T, class U, class V>
concept near_semiring = weak_magmaring<BOp1, BOp2, T, U, V> &&

monoid<BOp1, T, invoke_result_t<BOp2&, U, V>> && semigroup<BOp2, U, V> && requires {
typename two_sided_zero_t<BOp2, remove_cvref_t<U>, remove_cvref_t<V>>;

};

3.2.11 Indirect callable requirements [support.concepts.indirect]
The following concepts are convenience concepts, similar to those already in the C++20 WP. With the
exception of indirect_commutative_operation, all of the proposed concepts in this section require the
algebraic structure model writable to some object. This makes the indirect algebraic structure concepts
more in line with sortable and permutable than with indirect_unary_invocable, etc.

template<class BOp, class I1, class I2>
concept indirect_commutative_operation =

readable<I1> &&
readable<I2> &&
commutative_operation<BOp&, iter_value_t<I1>&, iter_value_t<I2>&> &&
commutative_operation<BOp&, iter_value_t<I1>&, iter_reference_t<I2>> &&
commutative_operation<BOp&, iter_reference_t<I1>, iter_value_t<I2>&> &&
commutative_operation<BOp&, iter_reference_t<I1>, iter_reference_t<I2>> &&
commutative_operation<BOp&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;

template<class BOp, class I1, class I2, class O>
concept indirect_magma =

readable<I1> &&
readable<I2> &&
writable<O, indirect_result_t<BOp&, I1, I2>> &&
magma<BOp&, iter_value_t<I1>&, iter_value_t<I2>&> &&
magma<BOp&, iter_value_t<I1>&, iter_reference_t<I2>&> &&
magma<BOp&, iter_reference_t<I1>, iter_value_t<I2>&> &&
magma<BOp&, iter_reference_t<I1>, iter_reference_t<I2>> &&
magma<BOp&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;
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template<class BOp, class I1, class I2, class O>
concept indirect_semigroup = indirect_magma<BOp, I1, I2, O> &&

semigroup<BOp&, iter_value_t<I1>&, iter_value_t<I2>&> &&
semigroup<BOp&, iter_value_t<I1>&, iter_reference_t<I2>&> &&
semigroup<BOp&, iter_reference_t<I1>, iter_value_t<I2>&> &&
semigroup<BOp&, iter_reference_t<I1>, iter_reference_t<I2>> &&
semigroup<BOp&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;

template<class BOp, class I1, class I2, class O>
concept indirect_monoid = indirect_semigroup<BOp, I1, I2, O> &&

monoid<BOp&, iter_value_t<I1>&, iter_value_t<I2>&> &&
monoid<BOp&, iter_value_t<I1>&, iter_reference_t<I2>&> &&
monoid<BOp&, iter_reference_t<I1>, iter_value_t<I2>&> &&
monoid<BOp&, iter_reference_t<I1>, iter_reference_t<I2>> &&
monoid<BOp&, iter_common_reference_t<I1>, iter_common_reference_t<I2>>;

template<class BOp1, class BOp2, class I1, class I2, class I3, class O>
concept indirect_weak_magmaring =

indirect_magma<BOp2, I2, I3, O> &&
indirect_magma<BOp1, I1, indirect_result_t<BOp2&, I2, I3>*, O> &&
weak_magmaring<BOp1&, BOp2&, iter_value_t<I1>&, iter_value_t<I2>&, iter_value_t<I3>&> &&
weak_magmaring<BOp1&, BOp2&, iter_value_t<I1>&, iter_value_t<I2>&, iter_reference_t<I3>> &&
weak_magmaring<BOp1&, BOp2&, iter_value_t<I1>&, iter_reference_t<I2>, iter_value_t<I3>&> &&
weak_magmaring<BOp1&, BOp2&, iter_value_t<I1>&, iter_reference_t<I2>, iter_reference_t<I3>> &&
weak_magmaring<BOp1&, BOp2&, iter_reference_t<I1>, iter_value_t<I2>&, iter_value_t<I3>&> &&
weak_magmaring<BOp1&, BOp2&, iter_reference_t<I1>, iter_value_t<I2>&, iter_reference_t<I3>> &&
weak_magmaring<BOp1&, BOp2&, iter_reference_t<I1>, iter_reference_t<I2>, iter_value_t<I3>&> &&
weak_magmaring<BOp1&, BOp2&, iter_reference_t<I1>, iter_reference_t<I2>, iter_reference_t<I3>> &&
weak_magmaring<BOp1&, BOp2&, iter_common_reference_t<I1>, iter_common_reference_t<I2>,

iter_common_reference_t<I3>>;

template<class BOp1, class BOp2, class I1, class I2, class I3, class O>
concept indirect_near_semiring =

indirect_weak_magmaring<BOp1, BOp2, I1, I2, I3, O> &&
near_semiring<BOp1&, BOp2&, iter_value_t<I1>&, iter_value_t<I2>&, iter_value_t<I3>&> &&
near_semiring<BOp1&, BOp2&, iter_value_t<I1>&, iter_value_t<I2>&, iter_reference_t<I3>> &&
near_semiring<BOp1&, BOp2&, iter_value_t<I1>&, iter_reference_t<I2>, iter_value_t<I3>&> &&
near_semiring<BOp1&, BOp2&, iter_value_t<I1>&, iter_reference_t<I2>, iter_reference_t<I3>> &&
near_semiring<BOp1&, BOp2&, iter_reference_t<I1>, iter_value_t<I2>&, iter_value_t<I3>&> &&
near_semiring<BOp1&, BOp2&, iter_reference_t<I1>, iter_value_t<I2>&, iter_reference_t<I3>> &&
near_semiring<BOp1&, BOp2&, iter_reference_t<I1>, iter_reference_t<I2>, iter_value_t<I3>&> &&
near_semiring<BOp1&, BOp2&, iter_reference_t<I1>, iter_reference_t<I2>, iter_reference_t<I3>> &&
near_semiring<BOp1&, BOp2&, iter_common_reference_t<I1>, iter_common_reference_t<I2>,

iter_common_reference_t<I3>>;

3.3 Arithmetic function objects [support.arithmetic.ops]
Just as P0896 redesigned the comparison function objects, P1813 seeks to redesign the numeric operation
function objects. This will allow us to:
— Forget about — and hopefully — one day eliminate the arithmetic function objects in namespace std.
— Apply requirements to each operation to ensure that they’re semantically sound (what does it ‘mean’

to evaluate 1 + vector{1, 2, 3}?).

3.3.1 Plus [support.arithmetic.plus]

namespace std::ranges {
template<class T, class U>
concept summable-with = // exposition only

default_initializable<remove_reference_t<T>> &&
default_initializable<remove_reference_t<U>> &&
common_reference_with<T, U> &&
requires(T&& t, U&& u) {

{ std::forward<T>(t) + std::forward<T>(t) } -> common_with<T>;
{ std::forward<U>(u) + std::forward<U>(u) } -> common_with<U>;
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{ std::forward<T>(t) + std::forward<U>(u) } -> common_with<T>;
{ std::forward<U>(u) + std::forward<T>(t) } -> common_with<U>;
requires same_as<decltype(std::forward<T>(t) + std::forward<U>(u)),

decltype(std::forward<U>(u) + std::forward<T>(t))>;
};

}

1 The expression t + u is expression-equivalent to u + t.
2 The expressions t + T{} == t, u + T{} == common_type_t<T, U>{}, and t + U{} == common_-

type_t<T, U>{} are all true.
[Note to reviewers: This is not the same as the dreaded has_plus; it’s more of a has_plus+. ]

struct plus {
template<class T, summable-with <T> U>
constexpr decltype(auto) operator()(T&& t, U&& u) const {

return std::forward<T>(t) + std::forward<U>(u);
}

using is_transparent = std::true_type;
};

template<class T, class U>
requires magma<ranges::plus, T, U>
struct left_identity<ranges::plus> {

constexpr common_type_t<T, U> operator()() const { return T{}; }
};

template<class T, class U>
requires magma<ranges::plus, T, U>
struct right_identity<ranges::plus> {

constexpr common_type_t<T, U> operator()() const { return U{}; }
};

template<>
struct inverse_traits<ranges::plus> {

using type = minus;
constexpr type operator()() const noexcept { return type{}; }

};
}

3.3.2 Negate [support.arithmetic.negate]

namespace std::ranges {
template<class T>
concept negatable = // exposition only

summable-with <T, T> &&
totally_ordered<T> &&
requires(T&& t) {

{ -std::forward<T>(t) } -> common_with<T>;
};

1 Let t, t1, and t2 objects of type T.
2 -(-t) is expression-equivalent to t.
3 The expression -t == t is true if, and only if, t == T{} is also true.
4 The expression -t < t is true if, and only if, T{} < t is also true.
5 The expression t + -t is expression-equivalent to T{}.
6 If t1 < t2 is true and T{} < t2 is true, then

—(6.1) t1 + -t2 < t1 is true,
—(6.2) t1 + -t2 > -t2 is true,
—(6.3) -t1 + t2 < t2 is true, and
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—(6.4) -t1 + t2 > t1 is true.

struct negate {
template<negatable T>
constexpr decltype(auto) operator()(T&& t) const {

return -std::forward<T>(t);
}

using is_transparent = std::true_type;
};

}

[Note to reviewers: negate is not a binary operation, but it is plausible for there to be an inverse_-
operation<negate> specialisation where operator() returns an object of type negate. ]

3.3.3 Minus [support.arithmetic.minus]

namespace std::ranges {
template<class T, class U>
concept differenceable-with = // exposition only

summable-with <T, U> &&
negatable <T> &&
negatable <U> &&
totally_ordered_with<T, U> &&
requires(T&& t, U&& u) {

{ std::forward<T>(t) - std::forward<T>(t) } -> common_with<T>;
{ std::forward<U>(u) - std::forward<U>(u) } -> common_with<U>;
{ std::forward<T>(t) - std::forward<U>(u) } -> common_with<T>;
{ std::forward<U>(u) - std::forward<T>(t) } -> common_with<U>;
requires same_as<decltype(std::forward<T>(t) - std::forward<U>(u)),

decltype(std::forward<U>(u) - std::forward<T>(t))>;
};

1 Let t1 and t2 be objects of type T, and u1 and u2 be objects of type U, where t1 != t2 and u1 != u2.
2 t1 - t2 is equivalent to t1 + -t2, u1 - u2 is equivalent to u1 + -u2, and t - u is equivalent to t +

-u.
3 t - t is expression-equivalent to T{}, u - u is expression-equivalent to U{}, and if t == u, then t -

u is expression-equivalent to common_type_t<T, U>{}.
4 t - (-t) is equivalent to t + t, u - (-u) is equivalent to u + u, and t - (-u) is equivalent to t +

u.
5 -t1 - t2 is equivalent to -(t1 + t2), -u1 - u2 is equivalent to -(u1 + u2), and -t - u is expression-

equivalent to -(t + u).
6 t + u - t is expression-equivalent to static_cast<common_type_t<T, U>(t), and t + u - u is

expression-equivalent to static_cast<common_type_t<T, U>(u).
[Note to reviewers: TODO: add semantics for subtraction and ordering. ]

struct minus {
template<class T, differenceable-with <T> U>
constexpr decltype(auto) operator()(T&& t, U&& u) const {

return std::forward<T>(t) - std::forward<U>(u);
}

using is_transparent = std::true_type;
};

template<class T, class U>
struct right_identity<ranges::minus, T, U> : private right_identity<ranges::plus, T, U> {

using right_identity<ranges::plus, T, U>::operator();
};
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template<>
struct inverse_traits<ranges::minus> {

using type = ranges::plus;
constexpr type operator()() const noexcept { return type{}; }

}
}

3.3.4 Times [support.arithmetic.times]
[Note to reviewers: The term multiplies is — in the author’s opinion — not the best name, and so the
author would like to take the opportunity of rename this function object so that one can more naturally
describe the computation.

A potential alternative is product, this is the result of multiplication, not the operation itself (we’d need to
rename plus to sum, etc., to facilitate that idea). ]

namespace std::ranges {
template<class T, class U>
concept multiplicable-with = // exposition only

summable-with <T, U> &&
constructible_from<remove_cvref_t<T>, int> && // specifically T{0} and T{1}
constructible_from<remove_cvref_t<U>, int> && // specifically U{0} and U{1}
constructible_from<remove_cvref_t<common_type<T, U>>, int> &&
common_reference_with<T, U> &&
requires(T&& t, U&& u) {

{ std::forward<T>(t) * std::forward<T>(t) } -> common_with<T>;
{ std::forward<U>(u) * std::forward<U>(u) } -> common_with<U>;
{ std::forward<T>(t) * std::forward<U>(u) } -> common_with<T>;
{ std::forward<U>(u) * std::forward<T>(t) } -> common_with<U>;
requires same_as<decltype(std::forward<T>(t) * std::forward<U>(u)),

decltype(std::forward<U>(u) * std::forward<T>(t))>;
};

1 T{0} is equivalent to T{}, and U{0} is equivalent to U{}.
2 The expressions

—(2.1) t * T{} == T{},
—(2.2) u * U{} == U{},
—(2.3) t * U{} == U{}, and
—(2.4) u * T{} == T{}

are all true.
3 The expressions

—(3.1) t * T{1} == t,
—(3.2) T{1} * t == t,
—(3.3) u * U{1} == u,
—(3.4) U{1} * u == u,
—(3.5) u * T{1} == u,
—(3.6) T{1} * u == u,
—(3.7) t * U{1} == t, and
—(3.8) U{1} * t == t

are all true.

struct times {
template<class T, multiplicable-with <T> U>
constexpr decltype(auto) operator()(T&& t, U&& u) const
{ return std::forward<T>(t) * std::forward<U>(u); }

using is_transparent = std::true_type;
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};

template<class T, class U>
requires magma<times, T, U>
struct left_identity<times> {

constexpr common_type_t<T, U> operator()() const { return T{1}; }
};

template<class T, class U>
requires magma<times, T, U>
struct right_identity<times> {

constexpr common_type_t<T, U> operator()() const { return U{1}; }
};

template<class T, class U>
requires magma<times, T, U>
struct left_zero<times> {

constexpr common_type_t<T, U> operator()() const { return T{}; }
};

template<class T, class U>
requires magma<times, T, U>
struct right_zero<times> {

constexpr common_type_t<T, U> operator()() const { return U{}; }
};

template<>
struct inverse_traits<times> {

using type = divided_by;
constexpr type operator()() const noexcept { return type{}; }

};
}

3.3.5 Divided by [support.arithmetic.divided_by]
[Note to reviewers: The term divides clashes with the predicate divides, which is used to indicate that
a quotient is an integer. The author recommends renaming this operation to divided_by. A potential
alternative is quotient, but this has the same issues as product. ]

namespace std::ranges {
template<class T, class U>
concept divisible-with = // exposition only

multiplicable-with <T, U> &&
subtractible-with <T, U> &&
requires(T&& t, U&& u) {

{ std::forward<T>(t) / std::forward<T>(t) } -> common_with<T>;
{ std::forward<U>(u) / std::forward<U>(u) } -> common_with<U>;
{ std::forward<T>(t) / std::forward<U>(u) } -> common_with<T>;
{ std::forward<U>(u) / std::forward<T>(t) } -> common_with<U>;
requires same_as<decltype(std::forward<T>(t) / std::forward<U>(u)),

decltype(std::forward<U>(u) / std::forward<T>(t))>;;
};

1 Let t1 and t2 be objects of type T, and u1 and u2 be objects of type U. It is undefined for t2 == T0 or
u2 == U0 to be true in all of the paragraphs below.

2 The expressions
—(2.1) (t1 / t2) * t2 == t1,
—(2.2) (t1 * t2) / t2 == t1,
—(2.3) (u1 / u2) * u2 == u1,
—(2.4) (u1 * u2) / u2 == u1,
—(2.5) (t1 / u2) * u2 == t1,
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—(2.6) (t1 * u2) / u2 == t1,
—(2.7) (u1 / t2) * t2 == u1, and
—(2.8) (u1 * t2) / t2 == u1

are all true.
3 The expressions T{} / t2 == T{}, U{} / u2 == U{}, T{} / u2 == common_type_t<T, U>{}, and

U{} / t2 == common_type_t<T, U>{} are all true.

struct divided_by {
template<class T, divisible-with <T> U>
constexpr decltype(auto) operator()(T&& t, U&& u) const
{ return std::forward<T>(t) / std::forward<U>(u); }

};

template<class T, class U>
requires magma<divided_by, T, U>
struct right_identity<divided_by> {

constexpr common_type_t<T, U> operator()() const { return U{1}; }
};

template<>
struct inverse_traits<divided_by> {

using type = times;
constexpr type operator()() const noexcept { return type{}; }

};
}

3.3.6 Modulus [support.arithmetic.modulus]
[Note to reviewers: An alternative name to modulus is remainder, which fits well with sum, difference,
product, and quotient. ]

namespace std::ranges {
template<class T, class Q>
concept modulo-with = // exposition only

divisible-with <T, Q> &&
requires(T&& t, Q&& q) {

{ std::forward<T>(t) % std::forward<T>(t) } -> common_with<T>;
{ std::forward<Q>(q) % std::forward<Q>(q) } -> common_with<Q>;
{ std::forward<T>(t) % std::forward<Q>(q) } -> common_with<T>;
{ std::forward<Q>(q) % std::forward<T>(t) } -> common_with<Q>;
requires same_as<decltype(std::forward<T>(t) % std::forward<Q>(q)),

decltype(std::forward<Q>(q) % std::forward<T>(t))>;
};

1 Let n and r be objects of type common_type_t<T, Q>.
2 The expression t == q * n + r is true if and only if t % q == r is true.

struct modulus {
template<class T, modulo-with <T> U>
constexpr decltype(auto) operator()(T&& t, U&& u) const
{ return std::forward<T>(t) % std::forward<U>(u); }

};

template<class T, class U>
requires magma<modulus, T, U>
struct left_zero<modulus> {

constexpr common_type_t<T, U> operator()() const { return T{}; }
};

}
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4 (informative)
Proofs [proof]
4.1 Adjacent difference is the inverse of partial sum [proof.adjacent.difference]
4.1.1 Defining adjacent difference [proof.adjacent.difference.defn]
Let (S,+) model a loop for some set S, where + denotes an arbitrary operation, and − denotes its inverse.
Let in be an ordered sequence of elements of the set S. There exists a function d : ([S],Z+)→ S, such that:

d(in, k) =
{

in1 when k = 1
ink − ink−1 when k > 1

There also exists an ordered sequence o, such that

on = d(in, n).

We define o as the adjacent difference of in.

4.1.2 Theorem [proof.adjacent.difference.theorem]
Suppose that a is an ordered sequence of elements of the set S, and that s is its partial sum, with respect to
+. The ajdacent difference of p is equivalent to a; that is, for all ordered sequences of length n, the adjacent
difference of a partial sum of an ordered sequence yields identity.

4.1.3 Proof [proof.adjacent.difference.proof]
Case n = 0: Since s0 and o0 are not defined, the proof is trivial.
Case n = 1: s1 = a1 and o1 = d(s, 1) = a1, so the proof is trivial.
Case n > 1:

sn = a1 + a2 + ...+ an (4.1)
o = [d(s1), d(s2), ..., d(sn)] (4.2)

= [a1, (a1 + a2)− a1, ..., (a1 + a2 + ...+ an)− (a1 + a2 + ...+ an−1)] (4.3)
= [a1,a2, ...,an] (4.4)
= a. (4.5)

Given that the theorem is true for n = 0, n = 1, and n > 1, the theorem is true for all natural numbers n.

4.2 Proof for uniqueness of a two-sided identity element [proof.identity]
Let (S, ·) be a magma. If there exist elements l, r in S, where for all other elements x in S, l · x = x and
x · r = x, then l = r.

4.2.1 Proof (by contradiction) [proof.identity.proof]
Let us first suppose that l and r are distinct. Then, l · r = r, since l is a left-identity. But l · r = l, since r is
a right-identity. This is a contradiction.
Therefore, l = r, and the proof is complete.

4.3 Proof for uniqueness of a two-sided zero element [proof.zero]
Let (S, ·) be a magma. If there exist elements l, r in S, where for all other elements x in S, l · x = l and
x · r = r, then l = r.

4.3.1 Proof (by contradiction) [proof.identity.proof]
Let us first suppose that l and r are distinct. Then, l · r = l, since l is a left-zero. But l · r = r, since r is a
right-zero. This is a contradiction.
Therefore, l = r, and the proof is complete.
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