Document Number: p1701r0
Date: 2019-06-14
To: SC22/WG21 EWG
Reply to: Nathan Sidwell nathan@acm.org

Inline Namespaces: Fragility Bites
Nathan Sidwell

Inline namespaces were added with the goal of allowing vendors to provide different source-compatible
and link-interoperable library variants. Unfortunately there was at least one defect with the design, and
that has opened the door to a conflicting unexpected use.

1 Background

Inline namespaces introduce a named scope that is almost invisible. Users do not need to name the
scope in order to access members within. Qualified and unqualified namespace-scope name lookup is
modified to also search inline namespace nests, adding any found entities to the lookup set.

The intent is to be able to write:

namespace std {

#ifdef SMALL STRING_OPTIMIZATION
inline namespace __SSoO

#endif

template <typename T> string
{ /* details unimportant. */ }

#ifdef _SMALL_STRING_OPTIMIZATION

}
#endif

}

The user of the vendor’s library can name ‘string” with ‘std::string’. The vendor can provide different
flavours of ‘string’ depending on _SMALL_STRING_OPTIMIZATION. Howard Hinnant noted:

Despite the weaknesses, I can report the transition period went remarkably smoothly.
libstdc++’s COW string never got confused at run-time with libc++’s SSO string.

p1701r0:Inline Namespaces: Fragility Bites -1- Nathan Sidwell



An unqualified declaration does not redeclare a declaration visible in an inline namespace nest,
however a qualified name does:

inline namespace A {
void foo () {} // #1
void bar () {} // #2

}

void foo () {} // OK, not redefinition of #1
void ::bar () {} // ERROR, redefinition of #2

However, template specializations do locate their general template within an inline namespace:

inline namespace A {
template <int 1> void foo () {} // #1

}

template<> void foo<1> () {} // OK, specializes #1

2 DR2061

Core DR2061" concerns a problem introduced by resolving DR1795:?

After the resolution of issue 1795, 10.3.1 [namespace.def] paragraph 3 [...] appears to break
code like the following:

namespace A {
inline namespace b {
namespace C {
template<typename T> void f();
}

}
}

namespace A {
namespace C {
template<> void f<int>() { }
}
}

because (by definition of “declarative region”) C cannot be used as an unqualified name to
refer to A: :b: : C within A if its declarative region is A: : b.

1 https://wg21.link/cwg2061
2 https://wg21.link/cwg1795

p1701r0:Inline Namespaces: Fragility Bites -2- Nathan Sidwell


https://wg21.link/cwg2061
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1795
https://wg21.link/cwg2061
https://wg21.link/cwg2061

Proposed resolution (September, 2015):
Change 10.3.1 [namespace.def] paragraph 3 as follows:

In a named-namespace-definition, the identifier is the name of the namespace. If the
identifier, when looked up (6.4.1 [basic.lookup.unqual]), refers to a namespace-name (but
not a namespace-alias) that was introduced in the deelarativeregior namespace in which
the named-namespace-definition appears or that was introduced in a member of the
inline namespace set of that namespace, the namespace-definition extends the
previously-declared namespace. Otherwise, the identifier is introduced as a namespace-
name into the declarative region in which the named-namespace-definition appears.

I.e when opening a namespace N, look for Ns indirectly reachable via nested inline namespaces. It is
only if there are no such Ns that we create a new namespace.

This behaviour is different to other unqualified declarations, as described in Section 1, where no such
inline namespace search occurs.

3 PR90291

I implemented DR2061 in GCC 8. Bug report PR90291° was raised. The bug reporter relates that their
software’s organization has the following hierarchy:

inline namespace A {
namespace detail { // #1
void foo() {} // #3

}
}

namespace detail { // #2
inline namespace C {
void bar() {} // #4
}
}

The intent is to have functions A::detail::foo (#3) and detail::C::bar (#4). However, with
DR2061 implemented, the namespace declaration #2 no longer creates a new top-level
namespace, but locates the previously opened A::detail at #1. Thus the second function’s fully
qualified name is A::detail::C::bar.

3 https://gcc.gnu.org/bugzilla/show bug.cgi?id=90291

p1701r0:Inline Namespaces: Fragility Bites -3- Nathan Sidwell


https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291

As the reporter expands in comments 6 & 7, A is a utility component name:

// header file
namespace component {
inline namespace utility {
namespace detail {
// stuff
}

}
}

// source file
#include “header file”
namespace component {
namespace detail {
// oops, component::utility::detail
}
}

If two different headers use the same hierarchy, but with different ‘utility’ names, a user that includes
both will discover that detail has become a poisoned namespace, as any attempt to open it will result in
an ambiguous lookup.

This problem was discussed on the core mailing list.* Gaby dos Reis commented that while DR2061 is
addressing the issue it intends to address:

However, this is already extremely fragile: if the namespace is also opened
before including the header [example] ... then this doesn't work: #2 reopens #3 instead of
#1.

However, inline namespaces have *also* been adopted for another behavior
entirely unrelated to versioning: as a way of providing an optional
namespace name component (eg, std::inline literals::inline chrono_literals,
or the example in that GCC bug report). In that guise, it is not reasonable

to look through the inline namespace set when considering reopening a
namespace.

Davis Herring suggested:

... any namespace declaration that would cause a subsequent (fully-qualified) namespace
lookup to be ambiguous due to inline namespaces should be rejected immediately.

That is, not accepting DR2061, but making namespace definition #2 in the bug report example above
ill-formed due to it (also) matching definition #1.

4 http://lists.isocpp.org/core/2019/04/6102.php

p1701r0:Inline Namespaces: Fragility Bites -4 - Nathan Sidwell


http://lists.isocpp.org/core/2019/04/6102.php

GCC 8 was released in May 2018, PR90291 was filed in April 2019. I note the following related PRs,
both fallout from implementing DR2061

* 87155,” anonymous namespaces inside inline namespaces (see Section 4)
* 81064,° libstdc++ breakage, because it had exactly this structure. The library was changed.
Given those issues, and Richard Smith’s comment that:

Clang intends to implement DR2061, but it looks like we get it wrong in
some ways ...

perhaps DR2061’s direction is suboptimal?

4 Unnamed Namespaces

The standard specifies:

An unnamed-namespace-definition behaves as if it were replaced by

inline,,: namespace unique { /* empty body */ }
using namespace unique ;
namespace unique { namespace-body }

... all occurrences of unique in a translation unit are replaced by the same identifier, and
this identifier differs from all other identifiers in the translation unit
[namespace.unnamed]

This wording means that placing an unnamed namespace inside an inline namespace could cause issues
with other unnamed namespaces within the same inline namespace nest:

namespace {}

inline namespace bob {
namespace {}

}

namespace {} // error, ambiguous

In addressing PR87155 (& PR89068) I accepted the above by not searching an inline namespace nest
when opening an unnamed namespace. Again, this was discussed on the core mailing list.” That
discussion concluded this was well-formed, but it predates the above-mentioned DR2061 discussion,
and I now consider the argument incomplete.

5 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87155
6 https:/gcc.gnu.org/bugzilla/show bug.cgi?id=81064
7 http://lists.isocpp.org/core/2018/08/4912.php

p1701r0:Inline Namespaces: Fragility Bites -5- Nathan Sidwell


https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90291
http://lists.isocpp.org/core/2018/08/4912.php

5 Discussion

The use shown in PR90291 conflicts with the direction taken in DR2061. The user’s rationale is
reasonable. That the report was nearly a year after compiler release is probably indicative of the user’s
compiler-update cadence (rather than bug obscurity). As G dos Reis notes, a scheme with similar
behaviour is now used in the STL. GCC encountered a few other bug reports related to the DR2061
change, and has implemented a workaround for that change in the unnamed namespace case.

Questions:

1. Should inline namespaces be searched when opening the namespace of a namespace definition?
This agrees with DR2061’s resolution but breaks the use case of PR90291.

2. When a namespace definition uses a qualified name, should lookup of the qualifying names
search inline namespaces? That would match the behaviour of other qualified-name
declarations, but break the equivalence between using a qualified name, or an explicit nest of
namespace definitions.

3. (If answer 1 is ‘no’), should an approach suggested by D Herring be taken, and prevent creating
new namespaces whose name matches an existing namespace within their local inline

namespace nest?

6 Revision History

RO First version

p1701r0:Inline Namespaces: Fragility Bites -6- Nathan Sidwell



	1 Background
	2 DR2061
	3 PR90291
	4 Unnamed Namespaces
	5 Discussion
	6 Revision History

