
Revisiting allocator model for coroutine lazy/task/generator.  
Document Number: P 1681 R0 Date: 2019-06-11 

Reply-to:  Gor Nishanov (gorn@microsoft.com)  Audience: LEWG 

Target: C++23 

1 Introduction 
Currently, proposed lazy<T> (formerly task<T>) coroutine type [P1056R1] uses an allocator customization model 

inspired by std::promise<T>. 

task<T>/lazy<T> std::promise<T> 
 
// Uses default allocator 
// to allocate coroutine state 
task<int> g(string s); 
 
// Uses provided allocator a. 
template <class Allocator> 
task<int> h( 
  allocator_arg, Allocator a); 
 
// Uses provided allocator a. 
template <class Allocator> 
task<int> f( 
  allocator_arg, Allocator a,  
  int x, int y) 
{ 
  ... 
  co_await h({}, a); 
  ... 
} 

 
promise(); // Uses default allocator to allocate 
           // shared state. 
 
// Uses provided allocator a. 
template <class Allocator> 
promise(allocator_arg_t, const Allocator &a);  

This model is reasonable when coroutines are allocated with stateful allocators, but it leads to proliferation of 

needless boilerplate code when used with stateless allocators by forcing all coroutines to carry two extra param-

eters. This can be avoided if std::task/lazy would follow a std::vector<T, alloc> model that makes an allocator a 

part of the type. 

Current Specification (P1056R1) Improved (add allocator template argument) 
 
task<int> g( 
  allocator_tag_t, MyAlloc,  
  string s); 
 
 
task<int> f( 
  allocator_tag_t, MyAlloc,  
  int x, int y) 
 
{ 
  ... 
  co_await g({},{}, “hello”); 
  ... 
} 

 
namespace my { 
  template <class T>  
  using task<T> = std::task<T, MyAlloc>; 
} 
 
my::task<int> g(string s); 
 
 
my::task<int> f(int x, int y){ 
  ... 
  co_await g(“hello”); 
  ... 
} 

 

We would like to request LEWG guidance on the best way of addressing this deficiency in lazy<T>/task<T> type. 

mailto:gorn@microsoft.com
https://wg21.link/p1056r1


p1681r0 Revisiting allocator model for coroutine lazy/task/generator 2 

The approach chosen will impact upcoming standard coroutine types like generator<T>, async_range<T> and is 

likely to be adopted by non-standard coroutine libraries as well.  

Let’s consider a few alternatives. 

2 Simple allocator approach 
We can borrow a concept of Proto-Allocator from the networking TS and require type A in the std::task<T,A> to 

satisfy that requirement. 

A type A meets the coroutine proto-allocator requirements if A is Cpp17DefaultConstructible, Cpp17Destructible, 

Cpp17CopyConstructible, and allocator_traits<A>::rebind_alloc<U> meets the Cpp17Allocator requirements, 

where U is an object type. [ Note: For example, allocator<void> meets the proto-allocator requirements but not 

the allocator requirements. —end note ] 

For coroutines with two or more arguments when the first argument is of allocator_arg_t type, the implementa-

tion would copy-construct a proto-allocator A from the second argument. Otherwise, coroutine will use the de-

fault constructed allocator to rebind and use to allocate required memory if needed. 

With new definition of task having an allocator argument 

template <class T, class A = std::coro_allocator1> class task; 

the model preserves the current behavior for stateful allocators unchanged and allows boilerplate-less use with 

stateless allocators. 

Stateful allocator (no change) Stateless Allocator (boilerplate no longer needed) 
 
// Uses default allocator 
// to allocate coroutine state 
std::task<int> g(string s); 
 
// Uses provided allocator a. 
template <class Allocator> 
std::task<int> h( 
  allocator_arg, Allocator a); 
 
// Uses provided allocator a. 
template <class Allocator> 
std::task<int> f( 
  allocator_arg, Allocator a,  
  int x, int y) 
{ 
  ... 
  co_await h({}, a); 
  ... 
} 

 
namespace my { 
  template <class T>  
  using task<T> = std::task<T, MyAlloc>; 
} 
 
// Uses MyAlloc to allocate coroutine state. 
my::task<int> g(string s); 
 
 
my::task<int> f(int x, int y){ 
  ... 
  co_await g(“hello”); 
  ... 
} 

 

                                                           
1 Here std::coro_allocator is a proto-allocator that implements the behavior from P1056R1, specifically 

it can be copy constructed from an arbitrary allocator doing allocator type erasure internally.  



p1681r0 Revisiting allocator model for coroutine lazy/task/generator 3 

3 Extend simple approach with parameter preview 
The simple approach described in the previous section addresses the boilerplate concern for stateless allocators, 

but, it is less flexible than what is possible today for hand-crafted coroutine types, where a coroutine type de-

signer can overload operator new of the coroutine promise and observe all arguments passed to a coroutine and 

decide based on those arguments how to obtain memory for the coroutine state. Here are a few examples of 

how this feature could be used: 

MyTask<T> MyClass::Frob(); Parameter preview for the operator new of MyTask 
can observe implicit object parameter and request 
memory for the coroutine from MyClass 

AnotherTask<T> Broom(memory_resource &r, …) 

 
Use memory_resource provided to allocate coroutine 
state. 

To support similar flexibility for standard coroutine types (std::lazy, std::generator, etc), we can add the support 

for parameter preview to the coroutine proto-allocator requirements. In addition to the one listed in the previ-

ous section, we can add a parameter preview requirement. 

A type A meets coroutine parameter preview requirements if it the following declaration is valid: 

A a(coroutine_parameter_preview, p1…pn); 

Where p1…pn are values of some (possibly different types), and parameter_preview is a constant of type 

coroutine_parameter_preview_t. 

Now, for coroutines with one or more arguments, an allocator is constructed with an expression 

A(coroutine_parameter_preview, p1…pn); where pi denotes an i-th function parameter. Otherwise, coroutine will 

use default constructed proto-allocator to rebind and use to allocate required memory if needed.  

4 Remove Cpp17DefaultConstructible requirement 
The approaches described before have a limitation that a stateful allocator must behave in a stateless fashion if 

it is default constructed. This prevents usage off-the-shelf stateful allocators that may not have a default con-

structor. We can remove default constructible requirement, then: 

• In the simple approach described in section 2, not having a default constructor would make it impossible 

to create a coroutine that do not have allocator_tag, myAlloc as the first two arguments. 

• In the variation with parameter preview in section 3, it would mean that coroutines with arguments not 

recognized by parameter preview constructor won’t be possible. 

5 Hybrid approach 
The benefit of a simple approach described in section 2 combined with removal of Cpp17DefaultConstructible 

requirement is that any type conforming to allocator requirements can be used to customize the coroutines. 

Parameter preview approach adds flexibility but loses the beneficial property that “off-the-shelf” allocators can 

be used with coroutines. 

A hybrid approach would check for presence of a constructor taking coroutine_parameter_preview and one or 

more arguments and, if valid, would use it. Otherwise, it would fallback to the simple approach. The hybrid ap-

proach preserves the best properties of simple and parameter preview approaches. 



p1681r0 Revisiting allocator model for coroutine lazy/task/generator 4 

6 Should default coroutine allocator type erase? 
In the status quo of P1056R1, std::lazy<T> type does not take an allocator and the only way to provide an arbi-

trary allocator to a coroutine is via allocator_arg, allocator pair which makes type erasing the allocator unavoid-

able.  

With the changes proposed in previous sections, we no longer have to type-erase arbitrary allocators for the 

std::lazy<T> with default coroutine allocator. If customer desires a type erasing allocator, it can specialize the 

task providing the allocator with desired behavior. This would also mean that in order to provide your own 

stateful allocator, a customer would need to specialize the coroutine type with an appropriate allocator. Which 

is a restriction compared to P1056R1, but, is in alignment with standard library types, like std::vector. 

7 At a glance 
Let’s pick a point in the design space: hybrid approach without allocator type erasure by default and without 

requirement for allocator to be default constructible and examine the user experience. 

Examples 
task<int> g(string s); // Uses std::allocator<void> to allocate coroutine state. 
 
namespace pmr { 
  template <class T> using task<T> = std::task<T, polymorphic_allocator<>>; 
} 
 
pmr::task<int> f1(); // Uses default constructed polymorphic allocator. 
 
// Uses polymorphic allocator constructed from the memory resource. 
pmr::task<int> f2(allocator_tag_t, memory_resource*);  
 
namespace my { 
  struct Arena; // Some allocation arena. 
  struct CustomAllocWithParameterPreview { 
    template <typename… Whatever> 
    CustomAlloc(coroutine_parameter_preview_t, Arena &a, Whatever const &…); 
    … 
  } 
  template <class T>  
  using task<T> = std::task<T, CustomAllocWithParameterPreview>; 
}; 
 
my::task<int> h1(); // error: CustomAlloc requires Arena& to be the first arg 
 
my::task<int> h2(Arena&); // Ok, uses CustomAlloc constructed  
                          // with provided Arena argument. 
 

To summarize: 

• Efficient stateless allocator without boilerplate 

• Comparable in flexibility to custom coroutine types with overloaded operator new 

• Using type-erasing allocators is possible 

• Using off-the-shelf allocator is possible. 

We would like LEWG guidance on which direction to take in designing allocator model for standard coroutine 

types. 



p1681r0 Revisiting allocator model for coroutine lazy/task/generator 5 

8 Bibliography 
[P1056R1] Lewis Baker, Gor Nishanov. “Add lazy coroutine (coroutine task) type” (WG21 paper, 2018-10-07). 

https://wg21.link/p1056r1

