
P1665R0

Tag Based Customization Point Functions

Author: John Bandela

Audience: LEWGI

Project: ISO/IEC JTC1/SC22/WG21 14882: Programming Language — C++

Reply-To: John Bandela (jbandela@gmail.com), Bryce Adelstein-Lelbach
(brycelelbach@gmail.com)

Abstract

This paper proposes a library change to improve how customization point functions are
specified, overridden, and invoked. This is a library only proposal.

Example
namespace std {
namespace customization_points {
class swap;
template <typename T>
auto std__customization_point(swap*, T*) {
 return [](T& lhs, T& rhs) { /*...*/ };
}
} // namespace customization_points
template <typename Tag>
struct __customization_point_caller {
 template <typename T, typename... Args>
 decltype(auto) operator()(T&& t, Args&&... args) const {
 return (std__customization_point(
 static_cast<Tag*>(nullptr),
 static_cast<add_pointer_t<remove_cvref_t<T>>>(nullptr))(
 std::forward<T>(t), std::forward<Args>(args)...));
 }
};

template <typename Tag>
inline constexpr __customization_point_caller<Tag> call_customization_point;
} // namespace std

// User override
auto std__customization_point(std::customization_points::swap*, foo*) {
 return [](foo& a, foo& b) { /*...*/ };
}

// Calling swap
std::call_customization_point<std::customization_points::swap>(a, b);

Background

Using single function overloads is a common pattern throughout the C++ Standard Library
and other C++ libraries. Examples include begin,end, size, and swap.

However, the problems with them are well known [1,2,3].

Some issues briefly are:

• Customization points are not differentiated from other functions

• While customization points are easy to override via overloading, invoking them can be
subtle, involving the std two-step: using std::swap; swap(a,b);

• The dispatch part of a call and the call itself are done in a single call expression. For
customization points with more than 1 parameter, this can lead to extra namespaces
considered for ADL which can lead to surprising overloads being called [4].

• The names of customization points are de facto reserved across other namespaces.
This can cause existing code to break. The introduction of size in C++17 broke at least
one code base [5].

Tag Based Customization Point Functions

What the standard library provides for all customization points

The standard library provides variable template customization_point_caller<Tag>
function object which passes a null pointer to Tag, along with a null pointer to the type of
the first argument to std__call_customization_point. It then calls the returned function
object forwarding all passed in parameters.

template <typename Tag>
struct __customization_point_caller {
 template <typename T, typename... Args>
 decltype(auto) operator()(T&& t, Args&&... args) const {
 return (std__customization_point(
 static_cast<Tag*>(nullptr),
 static_cast<add_pointer_t<remove_cvref_t<T>>>(nullptr))(
 std::forward<T>(t), std::forward<Args>(args)...));
 }
};
template <typename Tag>
inline constexpr __customization_point_caller<Tag> call_customization_point;
}

Specifying a customization point

To specify a customization point, the library declares a tag class in the desired namespace.

namespace std {
namespace customization_points {
class swap;
}
} // namespace std

Overriding a customization point

To override a customization point, the user provides an overload of
std__customization_point in the namespace of type for which the customization point is
being overridden, which takes a pointer to Tag and a pointer to the type for which the the
customization point is being specialized, and returns a function object which provides the
required behavior.

auto std__customization_point(std::customization_points::swap*, foo*) {
 return [](foo& a, foo& b) { /*...*/ };
}

Calling a customization point

To call a customization point, the user calls function object
std::call_customization_point<Tag> with any required parameters.

std::call_customization_point<std::customization_points::swap>(a,b);

Discussion

This addresses the issues that were brought up previously.

• Customization points are differentiated from other functions

• There is a canonical way to call customization points that is easy to teach and
immediately recognizable as a call to customization point.

• The customization point dispatch is separated from the actual call. Because only the
tag and the type is subject to ADL lookup and not additional parameters, this
decreases the opportunity for surprising overloads due to ADL for additional
argument types.

• Customization points can be added without the risk of name collisions in other
namespaces.

In addition, this provides a framework for other libraries to use. Instead of coming up with
their own customization point naming convention and hoping they don’t clash with other
names, libraries can just declare a tag in the appropriate namespace.

namespace awesome_library {
namespace customization_points {
class bar;
}
} // namespace awesome_library

This can then be overridden:

auto std__customization_point(awesome_library::customization_points::bar*,
 foo*) {
 return [](foo& f, parameter1& p1, parameter2& p2) { /**/ }
}

and called:

std::call_customization_point<awesome_library::customization_points::bar>(f,
p1,

p2);

As mentioned previously, this would also be a pure library change and not require any
language changes.

Bikeshedding
• Shorten the names by abbreviating customization_point to cp

– std::call_cp<std::cp::swap>(a,b);

• Naming conventions and namespaces of customization points

– std::begin_cp vs std::customization_points::begin vs std::cp::begin

• Name of overloaded function

– std__customization_point chosen with two underscores so that it is a
reserved name already.

• shorten to std__cp?

• Change to some other name?

References
1. Matt Calabrese. “P1292R0 Customization Point Functions” http://wg21.link/p1292r0

2. Eric Niebler: “Customization Point Design in C++11 and Beyond”
http://ericniebler.com/2014/10/21/customization-point-design-in-c11-and-beyond/

3. Arthur O’Dwyer. “C++ doesn’t know how to do customization points that aren’t
operators” https://quuxplusone.github.io/blog/2018/08/23/customization-point-or-
named-function-pick-one/

4. Michał Dominiak. Personal Communication

5. Arthur O’Dwyer. “Avoid ADL calls to functions with common names”
https://quuxplusone.github.io/blog/2018/06/17/std-size/

