P1631R0: Object detachment and attachment

Document #: P1631R0
Date: 2019-06-16
Project: WG21 Programming Language C++
WG21 SG1 Concurrency study group
WG21 SG12 Undefined behaviour study group
WG21 SG14 Low latency study group
Reply-to: Niall Douglas
<s_ sourceforge@nedprod.com>

[Note: This edition of P1631R0 is a quickly written temporary stand-in paper substi-
tuting for the proper paper cowritten by Bob Steagall and Niall Douglas, which was
delayed due to an automobile incident. The proper paper will probably replace this
paper within a few days of the mailing. — end note]

This paper outlines a proposal to add the following operations to the C++ abstract machine, which
provide an additional way of beginning and ending object lifetime, in addition to those already
described in |basic.life|:

1. Object detachment, which is the one-way, in-place, cast of a live object into an array of bytes
representing its detached object representation, ending the lifetime of the input object, and
beginning the lifetime of the returned array of bytes.

2. Object attachment, which is the one-way, in-place, cast of a byte array representing a pre-
viously detached live object, into an instance of the original live object. The lifetime of the
input byte array ends, and the lifetime of the reattached object begins.

Additionally, an additional utility function is proposed which prevents dead store elimination for a
range of bytes. This can be inefficiently implemented in today’s compilers using compiler-specific
assumptions, however a compiler built-in intrinsic would be more desirable.

It is believed that these proposed changes are sufficient to implement the transmission of object
represenations of a subset of C++ types, without undefined behaviour, through memory shared
between concurrent processes, memory mapped in from another device by DMA, process bootstrap
from a database of shared binary Modules, and the elemental operations for implementing zero-
copy serialisation and deserialisation. One also gains object relocation in memory, as byte arrays
are trivially copyable, so one can change the memory location of an object by detaching it, bit
copying it, and reattaching it, for objects of the subset of C++ types which are detachable and
attachable.

These changes ought to also finally enable operating system kernels, and other fixed latency code,
to no longer disable strict aliasing optimisation, if they refactor their current reinterpret cast based
code to use detach and attach casts instead.

An early draft of this proposal was presented to the May 2019 WG14 C programming language

mailto:s_sourceforge@nedprod.com

committee meeting in London. It was checked against the current C2x working draft’s memory and
object model, and was found to be compatible with no changes required to the existing wording
(though most present C compilers implement these operations very inefficiently). It was discovered
during discussion that the potential for dead store elimination would need to be handled in order
to ensure that detaching objects in shared memory would work correctly, and thus an additional
dead store elimination prevention function was added since the WG14 N2367 paper draft.

A partial reference implementation of detach_cast() and attach_cast<T>() based on bit casting
can be found at https://github.com/ned14/quickcpplib/blob/master/include/detach_cast.

hpp.

A reference implementation of the proposed standard library support can be found at https://
github.com/ned14/quickcpplib/blob/master/include/in_place_detach_attach.hpp.

Both of these reference implementations have been deployed into the reference library implementa-
tion for [P1031] Low level file i/o, where the proposed API design has been found to work well.

Changes since DO draft 1/WG14 N2367 (published to WG14):

Purged the pointer provenance stuff.

Purged the enhanced memory and object model stuff.

Reworked the definition of proposed detach and attach cast to meet WG14 feedback.
Added ensure stores, as it was pointed out by W(G14 that it is unavoidable in order to
correctly implement shared memory.

1 Acknowledgements

My thanks to the WG14 C programming language committee for reviewing during their London
meeting what was essentially a C-++ proposal paper, and giving such useful feedback which resulted
in a rearchitecture of this proposal.

Thanks to Jens Gustedt and Martin Uecker for their feedback on an early edition of D0, and further
feedback at the WG14 meeting.

2 References

[N4034] Pablo Halpern,
Destructive Move
https://wg21l.1link/N4034

[P0023| Denis Bider,
Relocator: Efficiently moving objects
https://wg2l.link/P0023

[P1031] Douglas, Niall
Low level file i/o library
https://wg21.link/P1031

https://github.com/ned14/quickcpplib/blob/master/include/detach_cast.hpp
https://github.com/ned14/quickcpplib/blob/master/include/detach_cast.hpp
https://github.com/ned14/quickcpplib/blob/master/include/in_place_detach_attach.hpp
https://github.com/ned14/quickcpplib/blob/master/include/in_place_detach_attach.hpp
https://wg21.link/N4034
https://wg21.link/P0023
https://wg21.link/P1031

[P1144] Arthur O’Dwyer, Mingxin Wang
Object relocation in terms of move plus destroy
https://wg21.link/P1144

https://wg21.link/P1144

	Acknowledgements
	References

