
Document: P1619R0
Date: 2019-03-10
Reply-to: Lisa Lippincott <lisa.e.lippincott@gmail.com>
Audience: SG6 (Numerics), LEWG

Functions for Testing Boundary Conditions on Integer Operations

Lisa Lippincott

Abstract

The integer operations in C++ have boundary conditions that may readily be encountered by novices.
Unfortunately for those novices, expressing these conditions in the language requires detailed knowledge
of the language, a degree of mathematical subtlety, and considerable care. I propose that we add library
functions that name and express these conditions more simply and directly, in a form conducive to use
in assertions.

1 Introduction

Integer arithmetic is one of the most elementary aspects of C++ programming, but the rules governing
integer arithmetic are arcane. Both experts and novices would be helped by a simple mechanism that
predicts whether an arithmetic operation will produce the expected result.

Keeping the mechanism simple presents a challenge. There are many integer operations, and these may
be applied to many integral types. In addition, the binary operations come with an additional in-place
form, which has different boundary conditions. And finally, the operations are used for both modular and
non-modular arithmetic, without making the intent of the programmer apparent in the syntax.

The C++ standard describes the behavior of arithmetic operations as a composition of promotions,
conversions, and arithmetic. But a parallel compositional approach fails to simplify user-facing tests, because
the list of operations to be composed is itself rather arcane. As witness to the complexity, I illustrate in
the diagram below my understanding of the steps involved in a binary expression; each step shown may
affect the value of the result. As witness to the arcane nature, I note that I have already had to correct the
diagram, and I think it’s likely that I will have to correct it again as people point out its flaws.

To reduce the complexity of performing these tests, I instead focus on connecting the action of whole
expressions to the intent of the programmer. This approach requires a large number of functions, but I
attempt to reduce cognitive load through uniform naming and semantics.

1

right argumentleft argument

conversion to left-hand type
(in-place operations only)

integral promotionintegral promotion

usual arithmetic conversion usual arithmetic conversion

preconditions
undefined
behavior

mathematical operation

conversion to result type
(in-place operations only)

assignment to result object
(in-place operations only)

result

pass

fail

Figure 1: Steps in a binary expression. Steps in rectangles may affect the result.

2

2 Wording

template <class R, class A> constexpr bool can_convert(A a) noexcept;

template <class R, class A> constexpr bool can_convert_modular(A a) noexcept;

template <class A> constexpr bool can_increment(A a) noexcept;

template <class A> constexpr bool can_decrement(A a) noexcept;

template <class A> constexpr bool can_promote(A a) noexcept;

template <class A> constexpr bool can_negate(A a) noexcept;

template <class A> constexpr bool can_increment_modular(A a) noexcept;

template <class A> constexpr bool can_decrement_modular(A a) noexcept;

template <class A> constexpr bool can_promote_modular(A a) noexcept;

template <class A> constexpr bool can_negate_modular(A a) noexcept;

template <class A, class B> constexpr bool can_add(A a, B b) noexcept;

template <class A, class B> constexpr bool can_subtract(A a, B b) noexcept;

template <class A, class B> constexpr bool can_multiply(A a, B b) noexcept;

template <class A, class B> constexpr bool can_divide(A a, B b) noexcept;

template <class A, class B> constexpr bool can_remainder(A a, B b) noexcept;

template <class A, class B> constexpr bool can_shift_left(A a, B b) noexcept;

template <class A, class B> constexpr bool can_shift_right(A a, B b) noexcept;

template <class A, class B> constexpr bool can_compare(A a, B b) noexcept;

template <class A, class B> constexpr bool can_add_modular(A a, B b) noexcept;

template <class A, class B> constexpr bool can_subtract_modular(A a, B b) noexcept;

template <class A, class B> constexpr bool can_multiply_modular(A a, B b) noexcept;

template <class A, class B> constexpr bool can_shift_left_modular(A a, B b) noexcept;

template <class A, class B> constexpr bool can_shift_right_modular(A a, B b) noexcept;

template <class A, class B> constexpr bool can_add_in_place(A a, B b) noexcept;

template <class A, class B> constexpr bool can_subtract_in_place(A a, B b) noexcept;

template <class A, class B> constexpr bool can_multiply_in_place(A a, B b) noexcept;

template <class A, class B> constexpr bool can_divide_in_place(A a, B b) noexcept;

template <class A, class B> constexpr bool can_remainder_in_place(A a, B b) noexcept;

template <class A, class B> constexpr bool can_shift_left_in_place(A a, B b) noexcept;

template <class A, class B> constexpr bool can_shift_right_in_place(A a, B b) noexcept;

template <class A, class B> constexpr bool can_add_in_place_modular(A a, B b) noexcept;

template <class A, class B> constexpr bool can_subtract_in_place_modular(A a, B b) noexcept;

template <class A, class B> constexpr bool can_multiply_in_place_modular(A a, B b) noexcept;

template <class A, class B> constexpr bool can_shift_left_in_place_modular(A a, B b) noexcept;

template <class A, class B> constexpr bool can_shift_right_in_place_modular(A a, B b) noexcept;

These functions shall not participate in overload resolution unless all template arguments are integral
types.

These functions express the conditions under which C++ integer arithmetic expressions model mathe-
matical operations in the integers. The correspondence between functions, expressions, and mathematical
operations is given by the table below. Functions ending in _modular correspond to the same expressions
and operations as their non-modular counterparts, but relate C++ arithmetic to arithmetic in the integers
modulo 2N .

3

Function Expression Mathematical Operation

can_convert<R> static_cast<R>(a) a
can_increment ++a a + 1
can_decrement --a a− 1
can_promote +a a
can_negate -a −a
can_add a+b a + b
can_subtract a-b a− b
can_multiply a*b a · b
can_divide a/b a/b, truncated toward zero
can_remainder a%b remainder from truncation of a/b toward zero
can_shift_left a<<b a · 2b
can_shift_right a>>b a/2b, truncated downward
can_add_in_place a+=b a + b
can_subtract_in_place a-=b a− b
can_multiply_in_place a*=b a · b
can_divide_in_place a/=b a/b, truncated toward zero
can_remainder_in_place a%=b remainder from truncation of a/b toward zero
can_shift_left_in_place a<<=b a · 2b
can_shift_right_in_place a>>=b a/2b, truncated downward
can_compare a==b, a<b, a<=b, a = b, a < b, a ≤ b

a!=b, a>b, a>=b, a 6= b, a > b, a ≥ b, respectively

Each of these functions compares the hypothetical evaluation of the expression listed in the table above
to evaluation of the corresponding mathematical operation as performed in the integers. Letting N be the
range exponent of the result type of the expression, the functions return true when all of the following
conditions hold, and false otherwise.

• If evaluated, the expression would have defined behavior.

• For each operand, the values before and after integral promotions and conversions are applied would
be congruent modulo 2N . Further, for each operand of a comparison, /, /=, %, %=, >>, or >>=, and for
each right-hand operand of << or <<=, the values before and after integral promotions and conversions
are applied would be equal.

• The result of the expression and the result of the mathematical operation would be congruent modulo
2N . Further, for functions not ending in “_modular”, the result of the expression and the result of the
mathematical operation would be equal.

[Note: Note that the arguments to the hypothetical expression are the parameters of the function, not
the arguments used to initialize those parameters. This means that the widths of bit-field arguments are not
considered:

struct S { int b: 3 };

S s = { 7 };

if (can_increment(s.b)) // true, but the bit-field can’t represent 8

++s.b; // s.b has an implementation-defined value

—end note]

3 Design Questions and Answers

Why not directly express the preconditions for the expressions? There is no point in meeting the
precondition of a function if it will nevertheless produce a useless answer. Therefore, these functions
ensure that the corresponding expression will produce a result fit for a particular purpose.

4

Why are there separate functions for modular and non-modular arithmetic? In C++, the same
expressions are used for both modular and non-modular arithmetic. The intended form of arithmetic
can only be determined by the programmer. Separating modular from non-modular arithmetic allows
the programmer to express that intent.

Why do these functions all consider promotions and conversions? To consider conversions and
promotions separately, a programmer would have to have a full understanding of the promotions and
conversions that occur in the evaluation of an expression. This would create a trap for less expert (or
less attentive) programmers, who could easily perform tests that do not model the C++ expressions
they intend to use.

Why are there separate functions for in-place arithmetic? The right-hand operand of an in-place
operation undergoes a conversion to the type of the left-hand operand. In addition, the result of the
operation is converted to the type of the left-hand operand. These additional conversions may affect
the boundary conditions.

Aren’t can_divide and can_remainder the same function? They always compute the same value.
But having separate functions is less trouble than teaching people to use can_divide as the check
for remainder. Also, they need not be the same function in all future versions of C++; we could
reasonably extend the remainder operation to provide the mathematically correct remainder even
when the quotient would be out of range.

Why aren’t there functions can_divide_modular or can_remainder_modular? Unfortunately, there
are two possible meanings for those names. A programmer might reasonably expect them to refer to
integer division and remainder with the result reduced modulo 2N , so that 23 divided by 12 is 1 with
a remainder of 11. A mathematician might reasonably expect division and remainder in Z/2N , so that
(for N = 32) 23 divided by 12 is 0x55555557 with a remainder of 3. As the operators / and % are
described perfectly well by can_divide and can_remainder, it seems like the best course is to avoid
these confusing names.

Are shift operations really arithmetic? Arguably. But more importantly, left and right shift have
preconditions on the right operand that are easily violated, and we should have functions to express the
preconditions. The precondition for right shift is can_shift_right, and the precondition for left shift
is can_shift_left_modular. (These preconditions apply to the promoted and converted operands.)

Why isn’t can_shift_left the precondition for << for signed integers? Don’t ask me. I’m not the
one who decided to allow one modular operation on signed integers. But can_shift_left_modular

expresses the precondition for << on all integer types, while can_shift_left is more strict.

Isn’t can_shift_right_modular the precondition for >>? Yes, it is. The functions can_shift_right

and can_shift_right_modular always produce the same result. It seems easier to use a consistent
naming scheme than to have everyone remember that some names are redundant.

Why are there functions can_convert_modular and can_promote_modular? By my understanding,
these functions will always return true, so they have minimal utility. But it seems easier to include the
functions than to have everyone remember that the functions do not exist.

Why are there no functions corresponding to the binary &, |, or ^ operators? By my under-
standing, these functions would always return true, so they would have minimal utility. They are also
hard to describe as arithmetic operations, so it seems easier to just say “they’re not arithmetic” and
be done with them.

What’s so special about the operands of /, %, >>, and the right-hand operand of <<? A difference
of 2N in these operands may change the result by an amount that is not a multiple of 2N . This leads
to situations where code produces a mathematically correct result for obscure reasons. Calculating
whether such obscure reasons pertain may be difficult, and does not seem helpful.

5

short s = 6; // Assuming 16-bit shorts

s %= 0x12340005; // C++ result: 1. Integer remainder: 6.

s = 6;

s %= 0x12340006; // C++ result: 0. Integer remainder: 6.

s = 6;

s %= 0x12340007; // C++ result: 6. Integer remainder: 6.

s = 6;

s >>= 0x12340008; // Defined behavior, but please don’t do this!

Why not test for all operands being unaltered by promotions and conversions? For most
operands, allowing differences of 2N does not complicate boundary conditions, and may be a reliable
intermediate step toward a correct result. In particular, negative integers may reliably be added to
unsigned integers of greater or equal magnitude (e.g. -5 + 15u is 10u).

Don’t all promotions and conversions leave operands unaltered modulo 2N? For some value
of N , yes. But not necessarily for the value of N relevant to the calculation at hand. In a perverse
implementation, integral promotion to unsigned may alter the value of an operand. If the result type
of the expression has range exponent larger than that of unsigned, the promotion may alter the result
of the calculation is bizarre ways. Consider an implementation with these types:

Type Size Range exponent Padding bits

short 8 48 16
int 8 32 32
unsigned 8 32 32
long 8 64 none

In such an implementation, short promotes to unsigned, making negative values of short quite
difficult to use:

short a = -1;

a += 1; // 0x100000000s, surprisingly positive

Can this scheme be made to work better with bit-fields?

I don’t see how any purely library solution can account for bit-fields. The type system effectively lies
about the types of bit-fields, giving the library no way to account for their limited width.

Can this scheme be extended to enumerated types? Yes, in at least four ways, each with its own
problems. The fourth choice requires the least effort.

• Ignore the possibility of operators overloaded for the enumerated type, and always convert the
enumerated type to its underlying type.

• Ignore the possibility of operators overloaded for the enumerated type, but consider only the usual
promotions and conversions.

• Provide a templated extension mechanism that authors can use to match the behavior of their
overloaded operators.

• Just let people overload these names in their own namespaces, and rely on dependent lookup.

Can this scheme be extended to floating point types? Perhaps not in a very useful manner.
On implementations that support them, infinities, signed zeroes, and NaNs may better express the
boundary conditions of floating point operations.

Can this scheme be extended to check full expressions? I expect these functions could be building
blocks for such a system. One approach would be to use expression templates, and a second approach
would be to create a set of types which can separately represent exact results, results reduced modulo
2N for various N , and NaNs.

Can these functions be used to implement a natural number type? Yes, I expect they can.

6

