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Abstract

Contracts in C++ 20, how they behave, and how they should be used are currently an open
question. The existing proposed contract levels of default, audit, and axiom are the result of a
great deal of compromise and are not an ideal solution for many of the large institutions hoping
to make use of contracts in the language. The currently proposed semantics — choosing between
undefined behavior and checking, with a single global flag to control continuation after checking
— are equally problematic for use at scale. This paper proposes two solutions to that problem,
one involving stripping the contracts feature to a bare minimum to avoid polluting the design
space for the future, and one involving adding to that the explicit semantics of [P1429R1] as
building blocks for experimentation.
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1 Revision history

• R1 – Wording, all reviewed by core except for specifics about behavior of the assume semantic,
which required decisions from EWG on desired behavior.

• R0 – Initial proposal with references to P1429R0

2 Minimal Solution

I am a great fan of the incremental approach - getting a minimal change in place and then
improving it based on feedback. I consider that engineering as opposed to the ideal of getting a
change perfect in advance - which I consider naive and at odds with reality.

Bjarne Stroustrup

We propose taking the following parts of the currently proposed solution away from the existing
contracts proposal:

• All contract levels other than default (including any syntax for specifying default).

• Undefined behavior when a contract is not evaluated.

• All values for build level other than off and default

• continuation mode, with evaluated contracts never continuing if they fail.

This leaves the following functionality:

• Contract checks can be specified using [[expects]], [[ensures]], and [[assert]] (or
[[pre]], [[post]], and [[assert]] if [P1344R0] is adopted).

• Contracts can be on. The predicates will be evaluated and result in an invocation of the
violation handler if they evaluate to false, std::abort will be called if the violation handler
returns normally.

• The violation handler is still establishable in an implementation-defined way.

• Contracts can be off and will not be evaluated, but still syntactically checked.

3 Additional Building Blocks

The specific behaviors that are useful for contracts have been inherent in the current form of the
contract proposals since [P0542R5]. In 2017, Lisa Lippincott published [P0681R0] with a very
thorough analysis of many possible semantics that might be useful for contract checks. [P1429R1]
narrowed that focus down to four semantics and proposed allowing explicit use of those semantics
by name within contract attributes. We propose adding in four identifiers with special meaning
and the associated definitions of the semantics for experimenting with different contract behaviors
before cementing a higher-level set of functionality into the language on top of those behaviors.
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This entails adding the following:

• Four identifiers with special meaning that can be placed in a contract-attribute-specifier to
translate that attribute with a specific semantic — ignore, assume, check_never_continue,
and check_maybe_continue.

• The definitions of those semantics, wording for which is available in [P1429R1].

• Expand the build mode to allow choosing any of the defined semantics for contract attributes
with no explicit semantic.

3.1 Example Usage 1: audit

This will allow users who wish to get behavior like the currently proposed audit to use a macro like
this:

#if defined(BUILD_LEVEL_AUDIT) && defined(CONTINUATION_MODE)
#define AUDIT_SEMANTIC check_maybe_continue

#elif defined(BUILD_LEVEL_AUDIT)
#define AUDIT_SEMANTIC check_never_continue

#else
#define AUDIT_SEMANTIC ignore

#endif

Then the following code with a precondition as might be currently specified:
T* binsearch(T*begin, T*end, const T&val)

[[expects audit : is_sorted(begin,end) ]]

becomes this:
T* binsearch(T*begin, T*end, const T&val)

[[expects AUDIT_SEMANTIC : is_sorted(begin,end) ]]

With control of the behavior based on using -DBUILD_LEVEL_AUDIT when compiling.

Similar macros and control macros for any scheme that has been proposed could then easily be built
by any enterprise that wishes to use facilities like that, or different, simpler or more complicated
facilities.

Once more widespread experience with these systems exists we hope to see a clearer consensus on
what to standardize on top of the building blocks proposed here.

3.2 Example Usage 2: assuming

Similarly, users who wish to have a checkable assume could build macro structures like this:
#if defined CHECK_SAFER_ASSUME

#define SAFER_ASSUME(P) [[assert check_never_continue : P]]
#else

#define SAFER_ASSUME(P) [[assert assume : P]]
#endif
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This provides a way to target specific points where introduced assumptions help performance, but
for testing and diagnosing any issues that might be related to these cases one can switch these
assumptions into enforced checks.

4 Voting

On July 16th, 2019, EWG discussed conntracts and had a number of votes. Relevant to this paper
were the following:

P1607R0 – All those in favor of discussing it
SF F N A SA
7 12 10 5 4

Take away build levels and continuation?
SF F N A SA
10 18 8 2 7

Add literal semantics
SF F N A SA
15 13 5 3 10

Add literal semantics
SF F N A SA
15 13 5 3 10

In addition, regarding P1769R0 there was the following vote:

Adopt P1769R0 as presented? SF F N A SA
16 20 8 0 2

Together, these poles indicate the following (based the acceptance of this paper’s first draft and
P1769R0):

• Remove contract levels.

• Add literal semantics as per P1429 (primarily now referencing P1429R2).

• Allow a single control for which semantic a contract with no literal semantic gets. (This has
been labelled implicit contract behavior during core wording).

• Do not specify what value implicit contract semantic has if it is not specified – which is
P1769R0’s interpretation within the context of this paper.

5 Formal Wording

In [lex.name], remove from table [tab:lex.name.special] audit and axiom, and add assume,
ignore, inform, and enforce.

In [basic.def.odr] Paragraph 12 item 12.6:
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• ...

• if D invokes a function with a precondition, or is a function that contains an assertion
or has a contract condition (9.11.4), it is implementation-defined under which
conditions all definitions of D shall be translated using the same build level and
violation continuation mode implicit contract behavior; and

• ...

In [dcl.attr.contract.syn] paragraph 1 the following is changed:
contract-attribute-specifier:

[ [ expects contract-levelopt contract-behavioropt : conditional-expression ] ]
[ [ ensures contract-levelopt contract-behavioropt identifieropt : conditional-
expression ] ]
[ [ assert contract-levelopt contract-behavioropt: conditional-expression ] ]

contract-level:
default
audit
axiom

contract-behavior:
assume
ignore
inform
enforce

An ambiguity between a contract-level contract-behavior and an identifier is resolved
in favor of contract-level contract-behavior .

Change [dcl.attr.contract.syn] paragraph 6 as follows:

The only side effects of a predicate of a checked contract that are allowed in a contract-
attribute-specifier are modifications of non-volatile objects whose lifetime began and
ended within the evaluation of the predicate. An evaluation of a predicate that exits via
an exception invokes the function std::terminate (13.5.1). The behavior of any other side
effect is undefined. [Example:

void push(int x, queue & q)
[[expects enforce: !q.full()]]
[[ensures enforce: !q.empty()]]

{
/* ... */
[[assert: q.is_valid()]];
/* ... */

}

int min = -42;
constexpr int max = 42;

constexpr int g(int x)
[[expects enforce: min <= x]] // error
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[[expects enforce: x < max]] // OK
{

/* ... */
[[assert enforce: 2*x < max]];
[[assert enforce: ++min > 0]]; // undefined behavior
/* ... */

}

—end example ]

[dcl.attr.contract.cond] paragraph 2 gets the following change:

Two lists of contract conditions are the same if they consist of the same contract con-
ditions in the same order. Two contract conditions are the same if their contract levels
contract-behaviors are the same, or both are absent and their predicates are the same.
Two predicates contained in contract-attribute-specifiers are the same if they would satisfy
the one-definition rule were they to appear in function definitions, except for renaming of
parameters, return value identifiers (if any), and template parameters.

In [dcl.attr.contract.cond] paragraph 7 update the example as follows:

[Example:
int f(int x)

[[ensures enforce r: r == x]]
{

return ++x; // undefined behavior
}

int g(int * p)
[[ensures enforce r: p != nullptr]]

{
*p = 42; // OK, p is not modified

}

int h(int x)
[[ensures enforce r: r == x]]

{
potentially_modify(x); // undefined behavior if x is modified
return x;

}

—end example ]

[dcl.attr.contract.check] gets the following changes:

If the contract-level of a contract-attribute-specifier is absent, it is assumed to be default.
[Note: A default contract-level is expected to be used for those contracts where the
cost of run-time checking is assumed to be small (or at least not expensive) compared to
the cost of executing the function. An audit contract-level is expected to be used for
those contracts where the cost of run-time checking is assumed to be large (or at least
significant) compared to the cost of executing the function. An axiom contract-level is
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expected to be used for those contracts that are formal comments and are not evaluated
at run-time. —end note ]

The contract behavior of a contract-attribute-specifier is one of ignore, assume, enforce,
and inform as specified by the contract-behavior . If the contract-behavior is absent,
the implicit contract behavior of the translation is used. The translation of a program
consisting of translation units where the implicit contract behavior is not the same in all
translation units is conditionally-supported. There should be no programmatic way of
setting, modifying, or querying the implicit contract behavior of a translation unit.

[Note: Multiple contract conditions may be applied to a function type with the same or
different contract-levels contract-behaviors . [Example:

int z;

bool is_prime(int k);

void f(int x)
[[expects: x > 0]]
[[expects audit enforce: is_prime(x)]]
[[ensures assume: z > 10]]

{
/* ... */

}

—end example ] —end note ]

The predicate of a contract with contract-behavior ignore or assume is an unevaluated
operand (expr.prop). The predicate of a contract without contract-behavior where the
implicit contract behavior is ignore or assume is not evaluated. [Note: The predicate is
potentially evaluated (basic.def.odr). —end note ]

If the predicate of a contract with the contract behavior assume would evaluate to false,
the behavior is undefined.

The violation handler of a program is a function of type “noexceptopt function
of (lvalue reference to const std::contract_violation) returning void”.
The violation handler is invoked when the predicate of a checked contract
evaluates to false (called a contract violation). There should be no program-
matic way of setting or modifying the violation handler. It is implementation
defined how the violation handler is established for a program and how the
std::contract_violation (support.contract.cviol) argument value is set,
except as specified below.

Implementations are encouraged to provide a default violation han-
dler that outputs the contents of the std::contract_violation
object and then returns normally

If a precondition is violated, the source location of the violation is implementa-
tion defined [Note: Implementations are encouraged but not required to report
the caller site. —end note ] If a postcondition is violated, the source location
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of the violation is the source location of the function definition. If an assertion
is violated, the source location of the violation is the source location of the
statement to which the assertion is applied.

If a violation handler exits by throwing an exception and a contract is vi-
olated on a call to a function with a non-throwing exception specification,
then the behavior is as if the exception escaped the function body. [Note:
The function std::terminate is invoked (except.terminate). —end note ]
[Example:

void f(int x) noexcept [[expects: x > 0]];

void g() {
f(0); // std::terminate() if

violation handler throws
/* ... */

}

—end example ]

A checked contract is a contract with the contract behavior inform or enforce. If
the contract behavior of a violated contract is enforce and execution of the violation
handler does not exit via an exception, execution is terminated by invoking the function
std::terminate (except.terminate). [Note: A contract behavior of enforce is for
detecting and ending a program as soon as a bug has been found. A contract behavior
of inform is provides the opportunity to instrument a contract into a pre-existing code
base and fix errors before enforcing the check. —end note ] [Example:

void f(int x) [[expects inform: x > 0]];
void g(int x) [[expects enforce: x > 0]];
void h() {

f(0); // Violation handler invoked.
g(0); // Violation handler invoked then std::terminate() after handler.
/* ... */

}

—end example ]

A translation may be performed with one of the following violation continuation modes:
off or on. A translation with violation continuation mode set to off terminates execution
by invoking the function std::terminate (except.terminate) after completing the
execution of the violation handler. A translation with a violation continuation mode set
to on continues execution after completing the execution of the violation handler. If no
continuation mode is explicitly selected, the default continuation mode is off . [Note:
A continuation mode set to on provides the opportunity to install a logging handler to
instrument a pre-existing code base and fix errors before enforcing checks. —end note ]
[Example:

void f(int x) [[expects: x > 0]];

void g() {
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f(0); // std::terminate() after handler if continuation mode is off;
// proceeds after handler if continuation mode is on

/* ... */
}

—end example ]

In [expr.const] paragraph 4 update the paragraph after item 4.23 to be a list:

If e satisfies the constraints of a core constant expression, but evaluation of e would
evaluate an operation that has undefined behavior as specified in Clause 15 through
Clause 31 of this document, or an invocation of the va_start macro (cstdarg.syn), it
is unspecified whether e is a core constant expression.

If e satisfies the constraints of a core constant expression, it is unspecified whether e is a
core constant expression if evaluation of e would do any of the following:

• evaluate an operation that has undefined behavior as specified in Clause 15 through
Clause 31 of this document;

• evaluate a contract with the contract behavior assume (dcl.attr.contract.check)
that would evaluate to false; or

• evaluate an invocation of the va_start macro (cstdarg.syn).

[except.terminate] needs the following line modified:

In some situations exception handling must be abandoned for less subtle error handling
techniques. [Note: These situations are:

• ...

• when the violation handler has completed after a failed contract check and the
continuation mode is off with the enforce contract behavior, or

• ...

]

6 Notes and Open issues

6.1 Wording changes from CWG

Working with Jens, the below name changes in how contracts are specified have been applied:

• Contract semantics are being referred to as “Contract Behaviors”. Jens found the use of
semantics as a noun, especially when often used in the less common singular form, a distraction
and we agreed Behavior to be the better term to fit in the standard.
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6.2 Open questions for EWG

• std::terminate or std::abort

• std::contract_violation should have assertion_level removed and then replaced by
contract_behavior. Should that be incorporated into this paper, go to LEWG, or both?

• P1704 – assume contracts are note evaluated and are unevalulated contexts.

• Should violation handler invocation/enforce be exception-agnostic with respect to the violation
handler throwing?

• P1670R0

6.3 Open questions for CWG

• Feature test macro?

6.4 Wednesday Papers

I will be happy to prepare a summary of the impact instead of the proposal for EWG for the papers
that have been subsumed by D1607R1.

P1704R0 – Undefined functions in axiom-level contract statements – This paper is now no longer
relevant, contracts with the assume behavior have these semantics and capture the intent of this
paper.

P1670R0 – Side Effects of Checked Contracts and Predicate Elision – This discussion and change is
just as valid to discuss now, and can easily be applied to the wording changes in this paper.

P1448R0 – Simplifying Mixed Contract Modes – I have clarified the meaning of this small change
with Jens and do not believe it needs addressing any longer.

P1672R0 – “Axiom” is a False Friend – This paper is no longer relevant.

P1671R0 – Contract Evaluation in Constant Expressions – This paper has been subsumed by the
wording we have put in D1607R1.

6.5 FAQ

Q: If axiom is removed, how can I express conditions that cannot be meaningfully
evaluated? A: If a contract behavior is explicitly ignore or assume, then it is an unevaluated
context that remains visible to static analysis tools. For example, the following might be written
against N4820:

template <input_itetator it, predicate test>
bool all_of(it first, it last, test fn)

[[expects axiom : is_reachable(first, last)]];

10



might be rewritten as:
template <input_itetator it, predicate test>
bool all_of(it first, it last, test fn)

[[pre ignore : is_reachable(first, last)]];

Q: If there is no global continue flag, how can I introduce contracts into my live system?
A: Firstly, you can introduce new contracts into existing code using the ignore or (preferably)
inform behaviors. If you are ingesting a large piece of code or library from a third party, you could
map the implicit contract behavior to either ignore or inform while validating the system, or use
libraries that provide their own well-documented configuration for determining what behaviors their
libraries will have in order to get the inform behavior.

Q: If audit is removed, how can I indicate which predicates are too expensive to check
at runtime by default? A: There is no immediate support for audit-like predicates in the new
wording. However, the building blocks are present to provide a similar facility with macros while we
gain more experience.

For example, the following might be written against N4820:
template <forward_itetator InIter, random_access_itetator OutIter, predicate Test>
bool sort( InIter first_in, InIter last_in,

OutIter first_out, OutIter last_out,
Test compare)

[[expects axiom : is_reachable(first_in, last_in )]]
[[expects axiom : is_reachable(first_out, last_out)]]
[[ensures : is_sorted(first_out, last_ount)]]
[[ensures audit : is_permutation(first_in, last_in, first_out, last_ount)]];

might be rewritten as:
#if defined(ENFORCE_EXPENSIVE_CHECKS)
# define AUDIT enfore
#else
# define AUDIT ignore
#endif

template <forward_itetator InIter, random_access_itetator OutIter, predicate Test>
bool sort( InIter first_in, InIter last_in,

OutIter first_out, OutIter last_out,
Test compare)

[[pre assume : is_reachable(first_in, last_in )]]
[[pre assume : is_reachable(first_out, last_out)]]
[[post : is_sorted (first_out, last_out)]]
[[post AUDIT : is_permutation(first_in, last_in, first_out, last_ount)]];
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