
Iterator Difference Type and Integer Overflow
Document #: P1522R1
Date: 2019-07-19
Project: Programming Language C++

Library Evolution Working Group
Library Working Group

Reply-to: Eric Niebler
<eric.niebler@gmail.com>

Contents
1 Introduction 1

2 Motivation and Scope 1
2.1 Design Principles . 2
2.2 Proposed Solution . 2

2.2.1 Anticipated Problems . 3
2.2.2 Additional Use Cases . 3

3 Implementation Experience 3

4 Impact on the Standard 4
4.1 Impact on Users . 4
4.2 Impact to Implementors . 4

5 Proposed Wording 5

6 Acknowledgements 12

7 References 13

1 Introduction

This paper seeks to redress a long-standing shortcoming of iterators with respect to the potential for signed
integer overflow in an iterator’s difference type. It does so in a low-impact way for C++20 by permitting
user-defined (but not program-defined) integer-like types to be used as an iterator’s difference type. This
leeway is used to solve a smattering of serious bugs in C++20’s iota_view, and can be used in the future to
avoid undefined behavior when we inevitably add infinite ranges to the Standard Library.

2 Motivation and Scope

The WeaklyIncrementable concept in the current Working Draft requires all incrementable types (including
iterators) to declare a difference_type. The difference type is required to be a “signed integer type”

1

mailto:eric.niebler@gmail.com

([iterator.requirements.general]/p1). This obviously presents a problem for infinite, near-infinite, or possibly-
infinite ranges, which can potentially overflow their difference types, leading to undefined behavior.

This problem immediately manifests in C++20’s iota_view, which builds a range out of either a
WeaklyIncrementable value (an unbounded range starting at that value), or a pair of Incrementable
values (denoting a half-open range). If the incrementable type in question is the highest-precision integer
(signed or unsigned) supported by the platform, it is impossible to pick a signed integer type to use as the
iota_view’s difference type such that that it is valid over the range’s entire domain. Merely subtracting the
beginning of such a range from the end can invoke undefined behavior.
iota_view v {size_t(0), SIZE_MAX};
auto d = v.end() - v.begin(); // Undefined behavior

Due to the requirement that difference type be a (built-in) signed integral type, there is no recourse.

Worse, the dual requirements that (a) all iterators have a difference type, and (b) the difference type is a
signed integral type are baked into the iterator concept hierarchy which, once C++20 is final, is fixed and
immutable for all time.

2.1 Design Principles

(As stolen from [Sutter] P0707:)

The primary design goal is conceptual integrity [Brooks 1975], which means that the design is coherent and
reliably does what the user expects it to do. Conceptual integrity’s major supporting principles are:

— Be consistent: Don’t make similar things different, including in spelling, behavior, or capability.
Don’t make different things appear similar when they have different behavior or capability.

— Be orthogonal: Avoid arbitrary coupling. Let features be used freely in combination.

— Be general: Don’t restrict what is inherent. Don’t arbitrarily restrict a complete set of uses. Avoid
special cases and partial features.

In addition to the above general principles, given the stability requirements on the Iterators and Ranges
design at this late stage of C++20, and the long-term importance of getting this right, for this paper, I add
additional design principles:

— Be non-disruptive: This design seeks to keep the current Iterator and Ranges design intact to the
extent possible to minimize the risk of unintended consequences.

— Be extensible: We consider an incomplete solution acceptable provided we have reason to believe a
full solution can be added later in an ABI-conpatible way.

2.2 Proposed Solution

The solution is to modify the WeaklyIncrementable concept to permit integer-like user-defined types to be
used as an iterator’s difference type. We do this in such a way that (a) only implementors of the Standard
Library can define and use such types for now, and (b) is forward ABI compatible should we decide at a later
time to extend this to program-defined integer-like types. (“User-defined” and “program-defined” are terms
used in the standard to denote class/union/enum types and class/union/enum types that are not part of the
Standard Library implementation, respectively.)

This extra dispensation given to Standard Library implementors can be immediately used to eliminate
the potential for integer overflow from the iota_view. For every built-in integer type N, the iota_view’s

2

difference type would be the signed integer type of the next-highest width supported by the platform (or the
type of N{0} - N{0} if that has enough bits). When there is no such greater-precision built-in integral type,
the Standard Library would be permitted to use some unspecified type that is sufficiently integer-like and
has enough width to represent the full range.

Naturally we have to specify what we mean by “sufficiently integer-like.” Rather than specify the requirements
of integer-like types as a standard concept, where it would be fixed and immutable for all time, we specify it
as an exposition-only trait, is-integer-like<T>, that is true for the built-in integral types and some set of
implementation-defined types – provided they exhibit sufficiently integer-like behaviors. Those syntactic and
semantic requirements are described in prose, which is a more forgiving specification medium than concepts.

2.2.1 Anticipated Problems

There is an obvious infinite regress problem in the proposed solution. Any user-defined integer type should
itself be incrementable, and thus should have a difference type that can represent the full range, which would
require one extra bit. And that type would also need a higher-precision difference type, and so on, up to
an infinite precision integer type. We do not want to commit implementors to writing an infinite precision
integer type (although that would be cool), so we cut off the infinite regress by only giving built-in integers
a difference type by default; hence, any user-defined integer types fail to satisfy WeaklyIncrementable.
iota_view<range_difference_t<iota_view<uintmax_t>> would simply fail to compile.

2.2.2 Additional Use Cases

Over the life of the [range-v3] project, several people have asked for the library to support program-defined
integer types, as shown by the following feature requests:

— “Integral concept overly simple” <https://github.com/ericniebler/range-v3/issues/356>
— “view/iota over opaque integers” <https://github.com/ericniebler/range-v3/issues/514>
— “Relax difference_type to support user-defined wrappers over Integer types” <https://github.com/ericniebler/range-

v3/issues/591>

The resolution proposed in this paper would open the door for such extensions post-C++20.

Here are some of the things people have wanted to do with support for program-defined integer types:

1. Use a “big” integer type with more width than their platform provides.
2. Use a safe integer wrapper that debug-asserts on overflow.
3. Use a saturating integer wrapper that locks to “infinity” on overflow.
4. Use a wrapper around an unsigned integer that disables modular arithmetic (to be used as the return

type of a .size() member, possibly).
5. Use a wrapper around a signed integer to assert if it is ever negative.

Of these, the first three are germane to iterators’ difference types.

3 Implementation Experience

The proposed resolution has been fully implemented in the range-v3 library in the master branch. range-v3
makes heavy internal use of a façade template for defining iterator types. After defining the trait and
modifying the concept as described, the façade was modified to give every iterator in range-v3 a program-
defined integer-like difference type. This exposed the places in range-v3 where the code made assumptions
about the iterator difference types. These problems were relatively few and easy to fix. The most common
faulty assumption was that all difference types are inter-convertible.

3

https://github.com/ericniebler/range-v3/issues/356
https://github.com/ericniebler/range-v3/issues/514
https://github.com/ericniebler/range-v3/issues/591
https://github.com/ericniebler/range-v3/issues/591

In all, it required only a few days of work to get all of range-v3’s tests passing with program-defined difference
types.

4 Impact on the Standard

I consider the potential impact of the proposed solution on users and on implementors.

4.1 Impact on Users

The immediate impact on users is negligible: we change the difference type of no iterators currently in the
field.

For users adopting C++20, the majority of iterators with which users will interact will use built-in types for
their difference types. In the author’s experience, most iterator-based code doesn’t mention the iterator’s
difference type, the exception of course being generic algorithms that count things or that use divide-and-
conquer strategies.

However, we expect iota_view<size_t [, size_t]> to be a quite common specialization, it being useful
to enumerate other ranges. On platforms that do not have extended integral types larger than size_t, the
difference type of that range’s iterator will possibly be user-defined. (This proposal grants implementors the
choice of whether or not to use a user-defined type in this case.)

In those rare cases in which a user encounters a user-defined integer type, there is a fair chance that they
will need to make accommodation for such in their code. Here are the sorts of problems that the author
encountered while hardening the range-v3 library against such types:

— No implicit conversions: All the built-in integral types are implicitly convertible to all the others.
This is quite unsafe, and with a user-defined integral type we would hope to do better. The downside
of using a safer integer-like type is that code that is sloppy about conversions would fail to compile.

— Not required to be WeaklyIncrementable: There is no requirement that a user-defined integer-
like type specify what its difference type is. (If we were to require that, then by induction im-
plementors would be on the hook to provide an infinite-precision integer-like type.) Therefore,
iota_view<iter_difference_t<I>> for an arbitrary iterator I may in fact be ill-formed.

— Cannot be passed to integer operations: Most of the functions in <cmath>, for instance, are
unlikely to be callable with such a type.

But probably the biggest issue is that an iterator that had a user-defined difference type would fail to satisfy
the C++98 iterator requirements. Passing such an iterator to an algorithm in std::, for instance, is unlikely
to succeed until implementors make explicit accommodations. (Experience shows this to be not difficult.)

4.2 Impact to Implementors

If this proposed resolution is accepted as specified, then there is no requirement that an implementor define
or use a user-defined difference type anywhere in the Standard Library. And since the is-integer-like
trait used to opt in is exposition-only, no program-defined iterator types can ever specialize this trait to
return true. Therefore, an implementor can skirt the issue entirely.

Choosing this option, however, has implications. As stated in the problem description, simply doing
ranges::distance(iota_view{size_t(0), SIZE_MAX}) would result in undefined behavior. If the im-

4

plementor chooses to address this problem with a user-defined integer-like type, their road is somewhat
longer.

The largest impact in that case is increased testing burden. Any part of the Standard Library that makes
direct or indirect use of an iterator’s difference type would need to be tested with an iterator that has a
user-defined difference type. This is not a trivial undertaking.

Those tests are likely to expose places in the Standard Library where the implementation is assuming the
difference type is a built-in integral. For instance, it may assume that the difference type is implicitly
convertible to ptrdiff_t. These are generally not hard to fix.

In all, it took roughly 2 days of work to modify the range-v3 library to support UDT integer types everywhere.
I would expect the effort for Standard Library implementors to be commensurate.

5 Proposed Wording

[Editor’s note: Change [iterator.requirements.general]/p1 as follows:]
1 [. . .] For every iterator type X, there is a corresponding signed integer-like ({iterator.concept.winc}) type

called the difference type of the iterator.

[Editor’s note: Change [iterator.concept.winc] as follows:]
1 The WeaklyIncrementable concept specifies the requirements on types that can be incremented with the

pre- and post-increment operators. The increment operations are not required to be equality-preserving,
nor is the type required to be EqualityComparable.
+ template<class T>
+ inline constexpr bool is-integer-like // exposition only
+ = see below ;
+ template<class T>
+ inline constexpr bool is-signed-integer-like // exposition only
+ = see below ;

template<class I>
concept WeaklyIncrementable =

Semiregular<I> &&
requires(I i) {

typename iter_difference_t<I>;
- requires SignedIntegral<iter_difference_t<I>>;
+ requires is-signed-integer-like <iter_difference_t<I>>;

{ ++i } -> Same<I&>; // not required to be equality-preserving
i++; // not required to be equality-preserving

};

[Editor’s note: After p1 and before the existing p2, add the following paragraphs, and then renumber the
subsequent paragraphs accordingly.]

2 A type I is an integer-class type if it is in a set of implementation-defined class types that behave as
integer types do, as defined in below.

3 The range of representable values of an integer-class type is the continuous set of values over which it is
defined. The values 0 and 1 are part of the range of every integer-class type. If any negative numbers are
part of the range, the type is a signed-integer-class type; otherwise, it is an unsigned-integer-class type.

5

4 For every integer-class type I, let B(I) be a hypothetical extended integral type of the same signedness
with the smallest width ([basic.fundamental]) capable of representing the same range of values. The width
of I is equal to the width of B(I).

5 Let a and b be objects of integer-class type I, let x and y be objects of type B(I) as described above that
represent the same values as a and b respectively, and let c be an lvalue of any integral type.

—(5.1) For every unary operator @ for which the expression @ x is well-formed, @ a shall also be well-formed
and have the same value, effects, and value category as @ x provided that value is representable by
I. If @ x has type bool, so too does @ a; if @ x has type B(I), then @ a has type I.

—(5.2) For every assignment operator @ = for which c @ = x is well-formed, c @ = a shall also be well-formed
and shall have the same value and effects as c @ = x. The expression c @ = a shall be an lvalue
referring to c.

—(5.3) For every binary operator @ for which x @ y is well-formed, a @ b shall also be well-formed and
shall have the same value, effects, and value category as x @ y provided that value is representable
by I. If x @ y has type bool, so too does a @ b; if x @ y has type B(I), then a @ b has type I.

6 All integer-class types are explicitly convertible to all integral types and implicitly and explicitly convertible
from all integral types.

7 All integer-class types are contextually convertible to bool as if by bool(a != I(0)), where a is an
instance of the integral-class type I.

8 All integer-class types model Regular (REF{concepts.object}) and StrictTotallyOrdered
(REF{concept.stricttotallyordered}).

9 A value-initialized object of integer-class type has value 0.
10 For every (possibly cv-qualified) integer-class type I, numeric_limits<I> is specialized such that:

—(10.1) numeric_limits<I>::is_specialized is true,
—(10.2) numeric_limits<I>::is_signed is true if and only if I is a signed-integer-class type,
—(10.3) numeric_limits<I>::is_integer is true,
—(10.4) numeric_limits<I>::is_exact is true,
—(10.5) numeric_limits<I>::digits is equal to the width of the integer-class type,
—(10.6) numeric_limits<I>::digits10 is equal to static_cast<int>(digits * log10(2)), and
—(10.7) numeric_limits<I>::min() and numeric_limits<I>::max() return the the lowest and

highest representable values of I respectively, and numeric_limits<I>::lowest() returns
numeric_limits<I>::min().

11 A type I is integer-like if it models Integral<I> or if it is an integer-class type. A type is signed-integer-like
if it models SignedIntegral<I> or if it is a signed-integer-class type. A type is unsigned-integer-like if it
models UnsignedIntegral<I> or if it is an unsigned-integer-class type.

12 is-integer-like <I> is true if and only if I is an integer-like type. is-signed-integer-like <I> is
true if and only if I is a signed-integer-like type.

13 Let i be an object of type I. When i is in the domain of both pre- and post-increment, i is said to be
incrementable. I models WeaklyIncrementable<I> only if [. . .]

[Editor’s note: We want to limit the change to only new iterator concepts, not to the old iterator requirements
tables, so change [iterator.iterators]/p2 as follows:]

2 A type X meets the Cpp17Iterator requirements if:

-(2.1) X meets the Cpp17CopyConstructible, Cpp17CopyAssignable, and Cpp17Destructible requirements
(16.5.3.1) and lvalues of type X are swappable (16.5.3.2), and

—(2.?) iterator_traits<X>::difference_type is a signed integer type or void, and

6

-(2.2) the expressions in Table 73 are valid and have the indicated semantics.

[Editor’s note: In section “Header <ranges> synopsis” (24.2), immediately following the header synopsis,
add a new paragraph as follows:]

1 Within this clause, for some integer-like type X (REF{iterator.concept.winc}), make-unsigned-like-t(X)
denotes make_unsigned_t<X> if X is an integer type; otherwise, it denotes a corresponding unspecified
unsigned-integer-like type of the same width as X. For an object x of type X, make-unsigned-like(x) is
x explicitly converted to make-unsigned-like-t(X).

[Editor’s note: Permit ranges::size to return an integer-like type and force it to be unsigned by changing
[range.prim.size] as follows:]

24.3.9 ranges::size

1 The name size denotes a customization point object (16.4.2.2.6). The expression ranges::size(E) for
some subexpression E with type T is expression-equivalent to:

—(1.1) decay-copy (extent_v<T>) if T is an array type (6.7.2).
—(1.2) Otherwise, if disable_sized_range<remove_cv_t<T>> (24.4.3) is false:

—(1.2.1) decay-copy (E.size()) if it is a valid expression and its type I models Integralis integer-like
(REF{iterator.concept.winc}).

—(1.2.2) Otherwise, decay-copy (size(E)) if it is a valid expression and its type I models Integralis
integer-like with overload resolution performed in a context that includes the declaration:

template<class T> void size(T&&) = delete;

and does not include a declaration of ranges::size.

—(1.3) Otherwise, (ranges::end(E) - ranges::begin(E)) if it is a valid expression and the types I
and S of ranges::begin(E) and ranges::end(E) model SizedSentinel<S, I> (23.3.4.8) and
ForwardIterator<I>. However, E is evaluated only once.

—(1.4) Otherwise, ranges::size(E) is ill-formed. [Note: This case can result in substitution failure
when ranges::size(E) appears in the immediate context of a template instantiation. — end
note]

2 [Note: Whenever ranges::size(E) is a valid expression, its type models Integralis integer-like. — end
note]

[Editor’s note: Change [range.iter.op.distance]/p3 as follows:]

template<Range R>
constexpr range_difference_t<R> ranges::distance(R&& r);

3 Effects: If R models SizedRange, equivalent to:

-return ranges::size(r); // 24.3.9
+return static_cast<range_difference_t<R>>(ranges::size(r)); // 24.3.9

Otherwise, equivalent to:

return ranges::distance(ranges::begin(r), ranges::end(r)); // 24.3

[Editor’s note: Change the class synopsis in [range.iota.view] as follows:]

7

template<WeaklyIncrementable W, Semiregular Bound = unreachable_sentinel_t>
requires weakly-equality-comparable-with<W, Bound>

class iota_view : public view_interface<iota_view<W, Bound>> {
private:

// 24.6.3.3, class iota_view::iterator
struct iterator; // exposition only
// 24.6.3.4, class iota_view::sentinel
struct sentinel; // exposition only
W value_ = W(); // exposition only
Bound bound_ = Bound(); // exposition only

public:
iota_view() = default;
constexpr explicit iota_view(W value);
constexpr iota_view(type_identity_t<W> value,

type_identity_t<Bound> bound);

constexpr iterator begin() const;
- constexpr sentinel end() const;
+ constexpr auto end() const;

constexpr iterator end() const requires Same<W, Bound>;

constexpr auto size() const
- requires (Same<W, Bound> && Advanceable<W>) ||
- (Integral<W> && Integral<Bound>) ||
- SizedSentinel<Bound, W>
- { return bound_ - value_; }
+ requires see below ;
};

template<class W, class Bound>
- requires (!Integral<W> || !Integral<Bound> || is_signed_v<W> == is_signed_v<Bound>)
+ requires (!is-integer-like <W> || !is-integer-like <Bound> ||
+ (is-signed-integer-like <W> == is-signed-integer-like <Bound>))
iota_view(W, Bound) -> iota_view<W, Bound>;

[Editor’s note: Immediately following the iota_view class synopsis, insert the following new paragraph and
renumber the subsequent paragraphs.]

1 Let IOTA_DIFF_T(W) be defined as follows:

— If W is not an integral type, or if it is an integral type and sizeof(iter_difference_t<W>) is greater
than sizeof(W), then IOTA_DIFF_T(W) denotes iter_difference_t<W>.

— Otherwise, IOTA_DIFF_T(W) is a signed integer type of width greater than the width of W if such a
type exists.

— Otherwise, IOTA_DIFF_T(W) is an unspecified signed-integer-like type (REF{iterator.concept.winc})
of width not less than the width of W. [Note: It is unspecified whether this type satisfies
WeaklyIncrementable. — end note] [Editor’s note: This gives implementors the freedom to use a
user-defined type as the difference type without requiring them to do so.]

[Editor’s note: Change [range.iota.view]/p4 as follows:]
4 The exposition-only Advanceable concept is equivalent to:

8

template<class I>
concept Advanceable =

Decrementable<I> && StrictTotallyOrdered<I> &&
- requires(I i, const I j, const iter_difference_t<I> n) {
+ requires(I i, const I j, const IOTA_DIFF_T (I) n) {

{ i += n } -> Same<I&>;
{ i -= n } -> Same<I&>;

- { j + n } -> Same<I>;
- { n + j } -> Same<I>;
- { j - n } -> Same<I>;
+ I(j + n);
+ I(n + j);
+ I(j - n);
- { j - j } -> Same<iter_difference_t<I>>;
+ { j - j } -> ConvertibleTo<IOTA_DIFF_T (I)>;

};

Let D be IOTA_DIFF_T(I). Let a and b be objects of type I such that b is reachable from a after n appli-
cations of ++a, for some value n of type iter_difference_t<I>D, and let D be iter_difference_t<I>.
I models Advanceable only if

—(4.1) (a += n) is equal to b.
—(4.2) addressof(a += n) is equal to addressof(a).
—(4.3) I(a + n) is equal to (a += n).
—(4.4) For any two positive values x and y of type D, if I(a + D(x + y)) is well-defined, then I(a +

D(x + y)) is equal to I(I(a + x) + y).
—(4.5) I(a + D(0)) is equal to a.
—(4.6) If I(a + D(n - 1)) is well-defined, then I(a + n) is equal to ++(a + D(n - 1)) [](I c){ return ++c;

}(I(a + D(n - 1))). [Editor’s note: Pre-increment on prvalues is not a requirement of
WeaklyIncrementable.]

—(4.7) (b += -n) is equal to a.
—(4.8) (b -= n) is equal to a.
—(4.9) addressof(b -= n) is equal to addressof(b).
—(4.10) I(b - n) is equal to (b -= n).
—(4.11) D(b - a) is equal to n.
—(4.12) D(a - b) is equal to D(-n).
—(4.13) bool(a <= b) is true.

[Editor’s note: Include the PR of https://github.com/ericniebler/stl2/issues/612 here.]

constexpr iota_view(type_identity_t<W> value, type_identity_t<Bound> bound);

7 Expects: Bound denotes unreachable_sentinel_t or bound is reachable from value. When W and
Bound model StrictTotallyOrderedWith, then bool(value <= bound) is true.

8 Effects: Initializes value_ with value and bound_ with bound.

[Editor’s note: Drive-by fix for https://github.com/ericniebler/stl2/issues/615. Change [range.iota.view]/10
as follows:]

-constexpr sentinel end() const;
+constexpr auto end() const;

10 Effects: Equivalent to: return sentinel{bound_};

9

if constexpr (Same<Bound, unreachable_sentinel_t>)
return unreachable_sentinel;

else
return sentinel{bound_};

[Editor’s note: After [range.iota.view]/11, insert a new paragraph 12 as follows:]

constexpr auto size() const requires see below ;

12 Remarks: The expression in the requires-clause is equivalent to

(Same<W, Bound> && Advanceable<W>) || (Integral<W> && Integral<Bound>) ||
SizedSentinel<Bound, W>

13 Effects: Equivalent to:

if constexpr (is-integer-like <W> && is-integer-like <Bound>)
return (value_ < 0)

? ((bound_ < 0)
? make-unsigned-like (-value_) - make-unsigned-like (-bound_)
: make-unsigned-like (bound_) + make-unsigned-like (-value_))

: make-unsigned-like (bound_) - make-unsigned-like (value_);
else

return make-unsigned-like (bound_ - value_);

[Editor’s note: Change the class synopsis of iota_view::iterator in [range.iota.iterator] as follows:]

template<class W, class Bound>
struct iota_view<W, Bound>::iterator {
private:

W value_ = W(); // exposition only
public:

using iterator_category = see below ;
using value_type = W;

- using difference_type = iter_difference_t<W>;
+ using difference_type = IOTA_DIFF_T (W);

iterator() = default
...

[Editor’s note: Change iota_view::iterator::operator+= in [range.iota.iterator]/11 as follows:]

constexpr iterator& operator+=(difference_type n)
requires Advanceable <W>;

11 Effects: Equivalent to:

-value_ += n;
+if constexpr (is-integer-like <W> && !is-signed-integer-like <W>) {
+ if (n >= difference_type(0))
+ value_ += static_cast<W>(n);
+ else

10

+ value_ -= static_cast<W>(-n);
+} else {
+ value_ += n;
+}
return *this;

[Editor’s note: Change iota_view::iterator::operator-= in [range.iota.iterator]/12 as follows:]

constexpr iterator& operator-=(difference_type n)
requires Advanceable <W>;

12 Effects: Equivalent to:

-value_ -= n;
+if constexpr (is-integer-like <W> && !is-signed-integer-like <W>) {
+ if (n >= difference_type(0))
+ value_ -= static_cast<W>(n);
+ else
+ value_ += static_cast<W>(-n);
+} else {
+ value_ -= n;
+}
return *this;

[Editor’s note: Change iota_view::iterator::operator[] in [range.iota.iterator]/13 as follows:]

constexpr W operator[](difference_type n) const
requires Advanceable <W>;

13 Effects: Equivalent to: return W(value_ + n);

[Editor’s note: Change iota_view::iterator::operator+ in [range.iota.iterator]/20 as follows:]

friend constexpr iterator operator+(iterator i, difference_type n)
requires Advanceable <W>;

20 Effects: Equivalent to: return iterator{i.value_ + n} i += n;

[Editor’s note: Change iota_view::iterator::operator- in [range.iota.iterator]/22 as follows:]

friend constexpr iterator operator-(iterator i, difference_type n)
requires Advanceable <W>;

22 Effects: Equivalent to: return i + -n i -= n;

[Editor’s note: Change iota_view::iterator::operator- in [range.iota.iterator]/23 as follows:]

friend constexpr difference_type operator-(const iterator& x, const iterator& y)
requires Advanceable <W>;

23 Effects: Equivalent to: return x.value_ - y.value_;

using D = difference_type;
if constexpr (is-integer-like <W>) {

11

if constexpr (is-signed-integer-like <W>)
return D(D(x.value_) - D(y.value_));

else
return (y.value_ > x.value_)

? D(-D(y.value_ - x.value_))
: D(x.value_ - y.value_);

} else {
return x.value_ - y.value_;

}

[Editor’s note: Drive-by fix of https://github.com/ericniebler/stl2/issues/613. Change the synopsis for class
iota_view::sentinel as follows:]

template<class W, class Bound>
struct iota_view<W, Bound>::sentinel {
private:

Bound bound_ = Bound(); // exposition only
public:

sentinel() = default;
constexpr explicit sentinel(Bound bound);

friend constexpr bool operator==(const iterator& x, const sentinel& y);
friend constexpr bool operator==(const sentinel& x, const iterator& y);
friend constexpr bool operator!=(const iterator& x, const sentinel& y);
friend constexpr bool operator!=(const sentinel& x, const iterator& y);

+ friend constexpr iter_difference_t<W> operator-(const iterator& x, const sentinel& y)
+ requires SizedSentinel<Bound, W>;
+ friend constexpr iter_difference_t<W> operator-(const sentinel& x, const iterator& y)
+ requires SizedSentinel<Bound, W>;
};

[Editor’s note: After [range.iota.sentinel]/5, add the following new paragraphs:]

friend constexpr iter_difference_t<W> operator-(const iterator& x, const sentinel& y)
requires SizedSentinel<Bound, W>;

6 Effects: Equivalent to: return x.value_ - y.bound_;

friend constexpr iter_difference_t<W> operator-(const sentinel& x, const iterator& y)
requires SizedSentinel<Bound, W>;

7 Effects: Equivalent to: return -(y - x);

6 Acknowledgements

Many thanks to Casey Carter for his willingness to discuss this issue at length with me and entertain my
many half-baked ideas for addressing it over the past year, and also for reviewing this paper in detail.

12

7 References

[range-v3] Range-v3: Ranges library for C++14/17/2a.
https://github.com/ericniebler/range-v3

13

https://github.com/ericniebler/range-v3

	Introduction
	Motivation and Scope
	Design Principles
	Proposed Solution
	Anticipated Problems
	Additional Use Cases

	Implementation Experience
	Impact on the Standard
	Impact on Users
	Impact to Implementors

	Proposed Wording
	Acknowledgements
	References

