
Document Number: P1474R1
Date: 2019-07-19
Audience: Library Working Group
Author: Casey Carter
Reply to: casey@carter.net

Helpful pointers for ContiguousIterator

1 Abstract
The support for contiguous iterators in the working draft is missing a useful feature: a mechanism to convert a
contiguous iterator into a pointer that denotes the same object. This paper proposes that std::to_address
be that mechanism.

Table 1 — Tony Table

Before After
extern "C" int some_c_api(T* ptr, size_t size);
extern "C" int other_c_api(T* first, T* last);

template<ContiguousIterator I>
int try_useful_things(I i, size_t n) {

// Expects: [i, n) is a valid range
if (n == 0) {

// Oops - can’t dereference
// past-the-end iterator
throw something;

}
return some_c_api(addressof(*i), n);

}

template<ContiguousIterator I>
int try_useful_things(I i, I j) {

// Expects: [i, j) is a valid range
if (i == j) {

// Oops - can’t dereference
// past-the-end iterator
throw something;

}
return other_c_api(addressof(*i),

addressof(*i) + (j - i));
}

extern "C" int some_c_api(T* ptr, size_t size);
extern "C" int other_c_api(T* first, T* last);

template<ContiguousIterator I>
int try_useful_things(I i, size_t n) {

// Expects: [i, n) is a valid range
return some_c_api(to_address(i), n);

}

template<ContiguousIterator I>
int try_useful_things(I i, I j) {

// Expects: [i, j) is a valid range
return other_c_api(to_address(i),

to_address(j));
}

1.1 Revision History
1.1.1 Revision 1

— Update Tony Table: C APIs can’t be overloaded, and add a bit of markup to make the differences
stand out.

— Correct bad pointer arithmetic in the description of the address of a past-the-end iterator whose
predecessor is dereferenceable.

— Remove bad ; after expression in a compound-requirement in the definition of ContiguousIterator.
— Remove operator-> requirement (which was not a core part of the proposal) due to LWG concerns.

1



1.1.2 Revision 0

— Initial revision.

2 Problem description
P0944R0 “Contiguous ranges” [1] proposed support for contiguous ranges and iterators, which was merged
into P0896R4 “The One Ranges Proposal” [?] and then merged into the Working Draft. Neither P0944R0 nor
P0896R4 proposed a means of obtaining a pointer to the element denoted by an arbitrary ContiguousIterator.
At the time, the author was under the impression that such a mechanism had been a “third rail” for past
contiguous iterator proposals [3], and that requiring such a mechanism would make it impossible to require
the iterators of the Standard Library containers to model ContiguousIterator. Those implementability
concerns have since been rectified.
Note that obtaining a pointer value from a dereferenceable ContiguousIterator is trivial: std::addressof(*i)
returns such a pointer value for a contiguous iterator i. Dereferencing a non-dereferenceable iterator is
(unsurprisingly) not well-defined, so this mechanism isn’t suitable for iterators not known to be dereferenceable.
Obtaining a pointer value for the potentially non-dereferenceable iterator j that is the past-the-end iterator
of a range [i, j) thus requires a different mechanism that is well-defined for past-the-end iterators. Ideally
the mechanism would also be well-defined for dereferenceable iterators so it can be used uniformly.
P0653R2 “Utility to convert a pointer to a raw pointer” [2] added the function std::to_address ([pointer.conversion])
to the Standard Library which converts values of so-called “fancy” pointer types and standard smart pointer
types to pointer values. In the interest of spelling similar things similarly, it seems a good idea to reuse this
facility to convert ContiguousIterators to pointer values. In practice, that means that a type I must be a
pointer type or
— specialize pointer_traits<I> with a member element_type or have a nested member element_type

so instantiation of pointer_traits<I> succeeds, and
— Either implement pointer_traits<I>::to_address or admit past-the-end (potentially non-dereferenceable)

iterator values in operator->().

3 Proposal
The basic proposal is to add a requirement to the ContiguousIterator concept that the expression std::to_-
address(i) for an lvalue i of type const I must
— be well-formed and yield a pointer of type add_pointer_t<iter_reference_t<i>>,
— be well-defined for both dereferenceable and past-the-end pointer values,
— yield a pointer value equal to std::addressof(*i) if i is dereferenceable, or 1 + std::addressof(*(i

- 1)) if i - 1 is dereferenceable.
Since dereferenceable ContiguousIterators always denote objects - their reference types are always lvalue
references - they can always feasibly implement the -> operator. -> is useful in contexts where the value type
of the iterator is concrete, so we propose requiring it for all ContiguousIterators. [Note: Recall that the
iterator concepts do not generally require operator-> as do the “old” iterator requirements. —end note ]
Now that there’s a mechanism to retrieve a pointer from a potentially non-dereferenceable iterator, we can
also cleanup the edge cases in ranges::data and ranges::view_interface::data which return nullptr
for an empty ContiguousRange rather than unconditionally returning the pointer value that the begin
iterator denotes.

4 Technical specifications
Change [iterator.concept.contiguous] as follows:

2

http://eel.is/c++draft/pointer.conversion
http://eel.is/c++draft/iterator.concept.contiguous


template<class I>
concept ContiguousIterator =

RandomAccessIterator<I> &&
DerivedFrom<ITER_CONCEPT(I), contiguous_iterator_tag> &&
is_lvalue_reference_v<iter_reference_t<I>> &&
Same<iter_value_t<I>, remove_cvref_t<iter_reference_t<I>>>; &&
requires(const I& i) {

{ to_address(i) } -> Same<add_pointer_t<iter_reference_t<I>>>;
};

2 Let a and b be dereferenceable iterators and c a non-dereferenceable iterator of type I such that
b is reachable from a and c is reachable from b, and let D be iter_difference_t<I>. The type I
models ContiguousIterator only if addressof(*(a + D(b - a))) is equal to addressof(*a)
+ D(b - a).
—(2.1) to_address(a) == addressof(*a),

—(2.2) to_address(b) == to_address(a) + D(b - a), and
—(2.3) to_address(c) == to_address(a) + D(c - a).

Change [range.prim.data] as follows:

1 The name data denotes a customization point object ([customization.point.object]). The expres-
sion ranges::data(E) for some subexpression E is expression-equivalent to:
—(1.1) If E is an lvalue, decay-copy(E.data()) if it is a valid expression of pointer to object type.
—(1.2) Otherwise, if ranges::begin(E) is a valid expression whose type models ContiguousIterator,

to_address(ranges::begin(E)).
ranges::begin(E) == ranges::end(E) ? nullptr : addressof(*ranges::begin(E))

except that E is evaluated only once.
—(1.3) Otherwise, ranges::data(E) is ill-formed. [Note: This case can result in substitution

failure when ranges::data(E) appears in the immediate context of a template instantiation.
—end note ]

Change [view.interface] as follows:

namespace std::ranges {
template<class D>

requires is_class_v<D> && Same<D, remove_cv_t<D>>
class view_interface : public view_base {

[...]

constexpr auto data() requires ContiguousIterator<iterator_t<D>> {
return ranges::empty(derived()) ? nullptr : addressof(*ranges::begin(derived()));
return to_address(ranges::begin(derived()));

}
constexpr auto data() const

requires Range<const D> && ContiguousIterator<iterator_t<const D>> {
return ranges::empty(derived()) ? nullptr : addressof(*ranges::begin(derived()));
return to_address(ranges::begin(derived()));

}

[...]
};

}

Bibliography
[1] Casey Carter. P0944R0: Contiguous ranges, 02 2018. http://www.open-std.org/jtc1/sc22/wg21/

docs/papers/2018/p0944r0.html.

3

http://eel.is/c++draft/range.prim.data
http://eel.is/c++draft/customization.point.object
http://eel.is/c++draft/view.interface
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0944r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0944r0.html


[2] Glen Joseph Fernandes. P0653R2: Utility to convert a pointer to a raw pointer, 11 2017. https:
//wg21.link/p0653r2.

[3] Nevin "=)" Liber. N4183: Contiguous iterators: Pointer conversion and type trait, 10 2014. https:
//wg21.link/n4183.

4

https://wg21.link/p0653r2
https://wg21.link/p0653r2
https://wg21.link/n4183
https://wg21.link/n4183

	1 Abstract
	1.1 Revision History

	2 Problem description
	3 Proposal
	4 Technical specifications
	Bibliography

