
Charset Transcoding, Transformation,
and Transliteration

Steve Downey

March 10, 2019

• Document number: P1439R1

• Date: March 10, 2019

• Author: Steve Downey <sdowney2@bloomberg.net>, Steve Downey
<sdowney@gmail.com>

• Audience: SG16

Abstract
Even in a Unicode-only environment, transcoding, transforming,

and transliterating text is important, and should be supported by the
C++ standard library in a user extensiblemanner. This paper does not
propose a solution, but outlines the characteristics of such a desired
facility.

1 Transcoding, Transforming, and Transliter-
ation

Even in aUnicode-only environment, transcoding, transforming, and translit-
erating text is important, and becomes even more important when deal-
ing with other text encoding systems.

Transcoding Converting text without loss of fidelity between encoding
systems, such as from UTF-8 to UTF-32, or from ASCII to a Latin-1
encoding. Transcodings shall be reversible.

Transforming Generalized conversion of text, casemapping, normaliza-
tion, or script-to-script conversion.

Transliteration The mapping of one character set or script to another,
such as from Greek to Latin, where the transformation may not be
reversible. The source is approximated by one or several encoded
characters.

1

1.1 Transcoding
It should be fairly clear that even if Unicode processing is done all in an
implementation-defined encoding, communicating with the rest of the
world will require supplying the expected encodings. Fortunately, con-
version between the UTF encodings is straightforward, and can be easily
be done code point by code point. There are common mistakes made,
however, such as transcoding UTF-16 surrogate pairs into distinct UTF-8
encoded code points (often known as WTF-8).1

Character encodings other than Unicode are still in wide use. Native
CJKV encodings are still commonly used for Asian languages, as many
systems that are in place were standardized before Unicode was adopted.
For example, there are also issueswithmapping Japanese encodingswhere
the same character exists in more than one location in the JIS encod-
ing. We generally treat converting from Shift-JIS to a Unicode encod-
ing as a lossless transcoding, even though the exact binary can not be
roundtripped because there is no semantic loss of information. It is sim-
ply that the same character has multiple representations in the encoding.

Real-world systems, even ones that may only emit Unicode in a single
encoding, are likely to have to deal with input in a variety of encodings.

1.2 Transformation
Unicode has standardized a variety of text transformation algorithms,
such as case mappings and normalizations. They also specify various
”tailorings” for these algorithms in order to support different languages,
cultures, and scripts.

ICU, the International Components for Unicode,2 offers a generalized
transformation mechanism, providing:

1. Uppercase, Lowercase, Titlecase, Full/Halfwidth conversions

2. Normalization

3. Hex and Character Name conversions

4. Script-to-Script conversion3

They provide a comprehensive and accurate mechanism for text-to-
text conversions. An example from the ICU User Guide4:

myTrans = Transliterator::createInstance(
”any-NFD; [:nonspacing mark:] any-remove; any-NFC”,
UTRANS_FORWARD,

1The WTF-8 encoding
2International Components for Unicode
3General Transforms
4ICU User Guide

2

https://simonsapin.github.io/wtf-8/
http://site.icu-project.org/
http://userguide.icu-project.org/transforms/general
http://userguide.icu-project.org/

status);
myTrans.transliterate(myString);

This transliterates an ICU string in-place. There are other versions that
may be more useful.

SearchingGitHub shows in theneighborhoodof 32Kuses of Transliterator::createInstance

1.3 Transliteration
Transliteration is a subset of general transformations, but is a very com-
mon use case. Converting to commonly-available renderable characters
comes up frequently.

A widely used implementation of transliteration is in the GNU iconv
package, where appending ”//TRANSLIT” to the requested to-encodingwill
be changed such that:

when a character cannot be represented in the target character
set, it can be approximated through one or several similarly
looking characters.

sdowney@kit:~
$ echo abc ß € àƀç | iconv -f UTF-8 -t ASCII//TRANSLIT
abc ss EUR abc

In this example, the German letter ß is transliterated to two ASCII ’s’es,
the Euro currency symbol is transliterated to the string ’EUR’, and the let-
ters àƀç have their diacritics stripped and are converted to the letters
’abc’. A similar program, uconv, based on ICU, does not do the € trans-
lation, leaving the Euro currency symbol untouched.

sdowney@kit:~
$ echo abc ß € àƀç | uconv -c -x Any-ASCII
abc ss € abc

The //TRANSLIT facility is exported in the character conversion APIs
of many programming languages, such as R, perl, and PHP.

There are over 7 million hits on GitHub for iconv, and 320K hits for
TRANSLIT and iconv.

Providing amigration path for users of ”//TRANSLIT” would be a great
benefit.

2 Private Character Sets and the Unicode Pri-
vate Use Area

We standardized character sets, like the American Standard Code for In-
formation Interchange (ASCII), in order to be able to communicate be-

3

tween systems. However, there is a long history of systems using their
own encodings and symbols internally.

Figure 1: The IBM PC Character Set

As you can see in figure 1, there are glyphs rendered for code points
that are non-printing in ASCII. The high characters include line drawing
and accented characters. The original PC was influential enough that the
character set became well-known and effectively standardized.

Figure 2: Bloomberg Terminal Font 0

Figure 2 contains the current formof the font originally usedbyBloomberg’s
hardware terminal. It was designed for internationalized finance. It in-
cludes the accented characters needed for Western European languages,
fractions and other special symbols used in finance, and a selection of
half-width characters tominimize use of screen real estate. The only non-
printing character is the space character. Even character 0x00 is in use,

4

for {LATIN CAPITAL LETTER C WITH CEDILLA}. Originally, null termi-
nated strings were not used. Instead, character arrays and a size were
the internal character format. Of course, this has caused issues over the
years. However, it meant that almost all European languages could be
used natively by the terminal.

Today, this character encoding is used only for legacy data. Data is
translated to Unicode, usually UTF-8, as soon as it is accepted. It is main-
tained that way throughout the system, as long as it was not originally in
a UTF encoding. Legacy data, where the encoding is known, are usually
translated to modern encodings at the first opportunity. It is occasion-
ally a challenge to know which encoding is being used. As the company
expanded beyond the Americas and Europe, additional local encodings
were added, but data was not always tagged with the proper encoding,
leading to complications.

There is still a necessity to maintain the characters used for financial
purposes. In particular, this is necessary to concisely and accurately com-
municate financial fractions. Unicode has standard fractions to 1/8th pre-
cision, ⅛ ¼ ⅜ ½ ⅝ ¾ ⅞, but in finance, fractions down to 1/64th are rou-
tinely quoted. Internally, Bloomberg uses code points in the Unicode Pri-
vate Use Area to represent these fractions, as well as the rest of its legacy
character sets. This allows for convenientmappings between scripts, treat-
ing the private code page as a distinct Unicode script. This is the intended
use of the Private Use Area, to handle ranges of code points that will not
be assigned meaning by the Unicode Consortium. 5

Bloomberg generally transliterates private characters when external-
izing data. For example, in sending out email:

5Private Use Area

5

http://unicode.org/glossary/#private_use_area

Ç ü é â ä à å ç ê ë è ï î ì Ä Å
É È Ì ô ö ò û ù ÿ Ö Ü á í ó ú ñ
 ! ” # $ % & ’ () * + , - . /
0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O
P Q R S T U V W X Y Z [\] ^ _
‘ a b c d e f g h i j k l m n o
p q r s t u v w x y z { | } ~ €
1/64 1/32 3/64 1/16 5/64 3/32 7/64 ⅛ 9/64 5/32
11/64 3/16 13/64 7/32 15/64 ¼
17/64 9/32 19/64 5/16 21/64 11/32 23/64 ⅜ 25/64
13/32 27/64 7/16 29/64 15/32 31/64 ½
33/64 17/32 35/64 9/16 37/64 19/32 39/64 ⅝ 41/64
21/32 43/64 11/16 45/64 23/32 47/64 ¾
49/64 25/32 51/64 13/16 53/64 27/32 55/64 ⅞ 57/64
29/32 59/64 15/16 61/64 31/32 63/64 ×
0) 1) 2) 3) 4) 5) 6) 7) 8) 9) 0 1 2 3 4 5
6 7 8 9 ↑ ↓ ← → ↗ ↙ ↖ ↘ (WI) (PF) (RT) (WR)
£ ¥ ₣ Ò Ù ± ≠ ≈ ≤ ≥ Õ Á Í ™ © ®
Ô ✓ Ó Ú Â Ê õ À Ñ ¿ ¡ « » ã Ã ß

3 Request for Proposal
Transliteration is in wide use. However, none of the existing facilities fit
well withmodern C++ or the current proposals for standardizing Unicode
text facilities. Providing extensible transliteration facilities will enable
a transition to the new libraries. Transcoding is also a requirement for
dealing with existing fixed APIs, such as OS HMI facilities.

3.1 Issues with existing facilities
• iconv is char* based, and has an impedancemismatchwithmodern
Ranges, as well as with iterators

• iconv relies on an error code return and checking errno as a call-
back mechanism

• ’Streaming’ facilities generally involve block operations on charac-
ter arrays and handling underflow

6

• ICU relies on inheritance for the types that can be transformed

• Interfaces that specify types as character string are not at all type
safe on the operations being requested

Some initial experiments using the new Ranges facilities suggest that
’streaming’ can be externalized without significant cost via iterators over
a view::join on an underlying stream of blocks. This would certainly
expand the reach of an API, while simplifying the interior implementa-
tion. Transcoding and transliteration APIs should generally not operate
in place, and should accept Range views as sources and output ranges as
sinks for their operations.

3.2 Desired Features
3.2.1 Ranges

It should be possible to apply any of the transcoding or transliteration
algorithms on any range that exposes code units or code points. Gen-
eral transformation algorithmsmay require code points. Combining algo-
rithms that transform charset encoded code units to code points and feed
that view into an algorithm for further transformation should be both
natural and efficient.

3.2.2 Open extension in build time safe way

The set of character sets and scripts is not fixed and must be developer
extensible. This extension should not require initialization in main or
dynamic loading of modules, as both lead to potentially disastrous run-
time errors. It is entirely reasonable to require compile time definitions
of character sets or scripts and require that library facilities be linked in if
customencodings are used. Using strings to indicate encoding rather than
strongly typed entities are problematic, and since the universe of charac-
ter sets is not fixed, standard library enums are not a good solution either.
NTTPs are possible areas of research, as are invocable objects.

3.2.3 Exception neutral error handling

Unfortunately, misencodings of all kinds are not actually exceptional in
text processing, particularly at the input perimeter. APIs that treat the
various issues as normal would be preferred. The API should provide
mechanisms for letting the library handle issues without intervention,
such as by indicating substitution characters for un-decodable input, while
also providing standardized callback mechanisms to allow more general
intervention. The API should certainly avoid the current pattern of re-
turning -1, checking the C errno which indicates the issue, and having the
caller fix and restart the conversion.

7

	Transcoding, Transforming, and Transliteration
	Transcoding
	Transformation
	Transliteration

	Private Character Sets and the Unicode Private Use Area
	Request for Proposal
	Issues with existing facilities
	Desired Features
	Ranges
	Open extension in build time safe way
	Exception neutral error handling

