
Contracts That Work
Document #: P1429R1
Date: 2019-03-08
Project: Programming Language C++
Audience: EWG
Reply-to: Joshua Berne <jberne4@bloomberg.net>

John Lakos <jlakos@bloomberg.net>
Abstract

In a number of papers ([P1332R0], [P1333R0], [P1334R0], [P1429R0]) we have proposed a
re-envisioning of how to structure the semantics of C++ contracts both to clarify their behavior
and to enable solutions for important real-world use cases that come up immediately when
attempting to introduce contracts into existing production codebases. Here, we aim to present
refined wording for the fundamental changes we feel should be considered to solve the C++

community’s needs and desires for contracts.

Contents
1 Revision history 1

2 Overview 2

3 CCS Semantics 2
3.1 Ignore . 3
3.2 Assume . 3
3.3 Check (Never Continue) . 3
3.4 Check (Maybe Continue) . 3

4 CCS Syntax 3

5 Formal Wording 4

6 Conclusion 6

7 References 6

1 Revision history

• R1 – Additional wording clarifications

– Consolidate to propose all semantics as explicitly usable.

1

mailto:jberne4@bloomberg.net
mailto:jlakos@bloomberg.net

– Removed mention of disabling contract checking entirely.

– Appendix sections A.1, A.2, A.3, and A.4.

• R0 – Initial draft

2 Overview

Contracts as originally specified in [P0542R5] consist of an attribute-like syntax for specifying contract
-checking statements (CCSs) within the language. This syntax allows for specifying contracts as
assertions (with assert), preconditions (with expects), or postconditions (with ensures). Each
CCS contains a conditional-expression (or predicate) that is expected to be true when control flow
reaches it. The current working paper (WP) fully captures how these different types of CCSs relate
to code meaning, so we will focus only on how CCSs behave in relation to their surrounding code
and other contracts by limiting our discussion to the assert “flavor” of CCSs.

The anticipated C++ contract checking facility (CCF) also introduces a violation handler that an
implementation is allowed to let users define for themselves (more restrictive implementations are
given the freedom to restrict the violation handler to one provided by the implementation). Our
semantics seek to make behavior of a CCS independent of the violation handler. A violation handler
may always choose to throw or abort, but to be the easiest to use for novices, we recommend that
the default violation handler should “log” information (a stack trace, etc.) about the problem and
return, leaving control flow up to the semantic in effect (for that specific CCS) at the call site.

What we seek to change is the way in which the behavior of a CCS is defined and determined, both
in code and at translation time. That is what the rest of this paper will focus on.

3 CCS Semantics

There are 4 semantics that are essential to the definition of the C++ CCF. Here, we are merely
giving names to the same semantics already accepted into the current draft of the working paper
(WP) — all for the sake of improving clarity. As a brief aside, we reprise how history arrived at the
semantics we are proposing here for C++.

• C’s assert macro allowed for 2 fundamental behaviors — do nothing (compile out, or
completely ignore) or abort on a failed check (which we call check_never_continue).

• Prior assertion facilities ([N3604], or Bloomberg’s BSLS_ASSERT) often enabled pluggable
behaviors for failed checks, including simply logging and continuing — we would call this
behavior check_maybe_continue.

• With the adoption of contracts as a language-level facility ([P0542R5]) the option for an
even more powerful way to leverage contracts became available by not checking contracts
but allowing the compiler to treat a contract failure as language undefined behavior — a
semantic which we would call assume. This was an option not achievable by any of the
previous library-only solutions.

2

Putting concise, clear definitions of all possible CCS semantics into the WP for C++ 20 would
improve future discussions of language interaction with contracts. Behavior can be discussed and
defined in terms of the semantics instead of specifying the exact combination of translation options
and code.

3.1 Ignore

The simplest semantic is to do nothing.

A CCS having the ignore semantic must be valid syntactically, but will otherwise never be evaluated
— as if it was embedded in an unevaluated context.

3.2 Assume

A CCS having the assume semantic will be syntactically checked and may (might) be assumed
(by the compiler) to be true. It is undefined behavior if the predicate were to be evaluated and it
returned false. Notably, the expression is never evaluated (and thus functions used in the expression
need not be defined for the program to be well-formed). Note also that there is no obligation on an
implementation to actually do anything with this information, and a conforming implementation
can freely treat this semantic identically to the ignore semantic.

3.3 Check (Never Continue)

A CCS having the check_never_continue semantic will evaluate the expression and if it is false will
invoke the violation handler. If the violation handler returns, std::abort will be invoked. This
guarantees that control flow will never continue if the predicate is false, so as a byproduct of that
behavior the predicate can be known to be true after the CCS.

3.4 Check (Maybe Continue)

A CCS having the check_maybe_continue semantic will evaluate the expression, and if it is false,
will invoke the violation handler. If the violation handler returns control flow continues as normal.

4 CCS Syntax

The current working paper allows each CCS to take an optional level (i.e., default, audit, or
axiom), and if none is specified, default is assumed. A level is mapped to an actual semantic (e.g.,
assume, check_never_continue. That mapping is performed (for each TU) at build time.

[P1334R0] proposes a way to cut out the middle man and specify the intended semantic directly in
the CCS itself. Explicit semantics like this bring us two useful properties:

• The CCS behavior is independent of build mode.

3

• The semantic of each CCS is independent of every other CCS in the same TU. It is this
critically important property that allows staging a check that is new and unverified in the
same TU as checks that are already fully enforced (or possibly even assumed). Note: The
absolute requirement of having differing semantics for CCSs (e.g., even those on the same
level) has been independently observed at larger software companies such as Google (e.g., by
Richard Smith) and Bloomberg (e.g., by John Lakos).

Allowing an explicit check_maybe_continue CCS is a way to get a simple version of the “review”
role discussed in-depth in [P1332R0]. A contract that is going to be a default level contract can
be introduced first with the check_maybe_continue semantic, and it will then run “safely” without
risking bringing down systems which previously were violating it in a “benign” fashion.

In the wording, where previously a contract-attribute-specifier contained an optional contract-level,
now we would let that level be either a contract-level or a contract-semantic, and encapsulate that
by defining a new grammar non-terminal contract-mode. The allowed explicit semantics all need
to be added to [lex.name]/2 — identifiers with special meaning — as well as the grammar for
contract-semantic.

5 Formal Wording

In [gram.dcl] the following is changed:
contract-attribute-specifier

[[expects optcontract-level optcontract-mode : conditional-expression]]
[[ensures optcontract-level optcontract-mode optidentifier : conditional-expression
]]
[[assert optcontract-level optcontract-mode: conditional-expression]]

contract-mode
contract-level
contract-semantic

contract-semantic
check_maybe_continue
check_never_continue
ignore
assume

In [lex.name], four identifiers, check_maybe_continue, check_never_continue, ignore and
assume, are added to the table Identifiers with special meaning.

[dcl.attr.contract.syn]/6 gets the following changes:

The only side effects of a checked predicate that are allowed in a contract-attribute-specifier are
modifications of non-volatile objects whose lifetime began and ended within the evaluation of the
predicate, or invocation of the violation handler and any side effects that function might have. An
evaluation of a predicate that exits via an exception invokes the function std::terminate The
behavior of any other side effect is undefined.

4

[dcl.attr.contract.check] gets replaced by the following (3 paragraphs removed completely for
brevity):

If the contract- level mode of a contract-attribute-specifier is absent, it is assumed to be a
contract-level of default. [Note: A default contract-level is expected to be used for those contracts
where the cost of run-time checking is assumed to be small (or at least not expensive) compared to
the cost of executing the function. An audit contract-level is expected to be used for those contracts
where the cost of run-time checking is assumed to be large (or at least significant) compared to the
cost of executing the function. An axiom contract-level is expected to be used for those contracts that
are formal comments and are not evaluated at run-time cannot be checked at run-time - i.e., they
cannot be implemented or would require side-effects to execute. A contract-semantic is expected
to be used for those contracts that need a semantic independent of the build mode. —end note]

The violation handler of a program is a function of type “optnoexcept function of (lvalue reference
to const std::contract_violation) returning void”. The violation handler is invoked when the
predicate of a checked contract evaluates to false when the semantic given to a contract indicates
it should be (called a contract violation). There should be no programmatic way of setting or
modifying the violation handler. It is implementation-defined how the violation handler is established
for a program and how the std::contract_violation argument value is set, except as specified
below. [Note: Implementations are encouraged but not required to provide a default violation
handler that outputs the contents of the std::contract_violation object then returns normally.
—end note] If a precondition is violated, the source location of the violation is implementation-
defined [Note: Implementations are encouraged but not required to report the caller site. —end
note] If a postcondition is violated, the source location of the violation is the source location of
the function definition. If an assertion is violated, the source location of the violation is the source
location of the statement to which the assertion is applied.

If a violation handler exits ... (unchanged note on throwing violation handlers and noexcept
functions.)

Every contract will be given a semantic at translation time that is ignore, assume, check_never_-
continue, or check_maybe_continue.

A translation may be performed with varying build modes. The mechanism for selecting build modes
is implementation-defined. The translation of a program consisting of translation units where the
build mode is not the same in all translation units is conditionally-supported, with implementation
defined semantics. There should be no programmatic way of setting modifying, or querying any
part of the build mode of a translation unit. The build mode contains the following values:

• An axiom contract mode with a value of assume or ignore. If specified, all axiom level contracts
have the named semantic.

• A default contract mode with a value of assume, ignore, check_maybe_continue or check_-
never_continue. If specified, all default level contracts have the named semantic.

• A audit contract mode with a value of assume, ignore, check_maybe_continue or check_-
never_continue. If specified, all audit level contracts have the named semantic.

If not specified by the build mode, a default level contract has the semantic check_never_continue.

5

If not specified by the build mode, an audit level contract has the semantic ignore.

If not specified by the build mode, an axiom level contract has the semantic ignore.

A contract having a contract-semantic has the semantic named by that contract-semantic.

A contract having the semantic ignore is not checked and not evaluated.

A contract having the semantic assume is not checked and not evaluated. It is undefined behavior if
the predicate of such a contract would evaluate to false. [Note: The implementation may freely
evaluate any parts of the predicate that are available to it which do not have side effects, thus
allowing it to “prove” the violation of the predicate. —end note]

A contract having the semantic check_never_continue is checked. The predicate is evaluated
and if it returns false the violation handler is invoked. If the violation handler returns normally,
std::abort will be invoked.

A contract having the semantic check_maybe_continue is checked. The predicate is evaluated and
if it returns false the violation handler is invoked.

The predicate of a contract that does not have a checked semantic in any build mode is an unevaluated
operand.

During constant expression evaluation (7.7), any call to the violation handler is ill-formed. [Note:
Contracts with checked semantics are still evaluated as normal, thus any contract violation of a
checked contract during constant expression evaluation will be ill-formed. —end note]

During constant expression evaluation, a violation of a contract having the assume semantic is
ill-formed, no diagnostic required. [Note: Implementations are encouraged to fail to translate any
compile-time contract violations they identify, but are not required to identify all such violations
when they might involve undefined functions, side effects, or infeasible runtime complexities. —end
note]

6 Conclusion

These proposed wordings capture the original stated intent of the merged contract proposal, with
the addition of the features in [P1333R0] and [P1334R0].

7 References

[N4800] Richard Smith, Working Draft, Standard for Programming Language C++

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4800.pdf

[N3604] John Lakos, Alexei Zakharov, Centralized Defensive-Programming Support for Narrow
Contracts
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3604.pdf

6

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4800.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3604.pdf

[N4075] John Lakos, Alexei Zakharov, Alexander Beels, Centralized Defensive-Programming Support
for Narrow Contracts (Revision 6)
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4075.pdf

[P0542R5] G. Dos Reis, J. D. Garcia, J. Lakos, A. Meredith, N. Myers, B. Stroustrup, Support for
contract based programming in C++

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html

[P1290R0] J. Daniel Garcia, Avoiding undefined behavior in contracts
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1290r0.pdf

[P1290R1] J. Daniel Garcia, Ville Voutilainen Avoiding undefined behavior in contracts
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1290r1.pdf

[P1290R3] J. Daniel Garcia, Avoiding undefined behavior in contracts

[P1332R0] Joshua Berne, Nathan Burgers, Hyman Rosen, John Lakos, Contract Checking in C++:
A (long-term) Road Map
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1332r0.txt

[P1333R0] Joshua Berne, John Lakos, Assigning Concrete Semantics to Contract-Checking Levels
at Compile Time
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1333r0.txt

[P1334R0] Joshua Berne, John Lakos, Specifying Concrete Semantics Directly in Contract-Checking
Statements
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1334r0.txt

[P1335R0] John Lakos, ”Avoiding undefined behavior in contracts” [P1290R0] Explained
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1335r0.txt

[AKRZEMI1] Andrzej Krzemieński, Assigning semantics to different Contract Checking Statements
https://github.com/akrzemi1/__sandbox__/blob/master/papers/ccs_roles.md

[P1429R0] Joshua Berne, John Lakos Contracts That Work
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1429r0.pdf

A Other Wording Improvements

Changes discussed in this section have been incorporated into the formal wording above, and we see
them as bug fixes on the previous version of this document and the working paper. These are the
result of further refinement, reflector discussions, and discussion with a number of people at the
2019 Kona meeting.

7

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4075.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1290r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1290r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1332r0.txt
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1333r0.txt
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1334r0.txt
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1335r0.txt
https://github.com/akrzemi1/__sandbox__/blob/master/papers/ccs_roles.md
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1429r0.pdf

A.1 constexpr Evaluation

Wording has been added to explicitly call out how contract violations should be dealt with during
constant expression evaluation. The violation handler users might install is intended to be part of
the system they deploy, and requiring that to be constexpr evaluatable seems not to be helpful. In
order to catch checks at compile time, making a call to the violation handler ill-formed, diagnostic
required, achieves this goal.

For assumed contracts, we do not want to require that the compiler actually try to evaluate the
expression, but we do not want to preclude compilation failures when a failure is noticed by the
compiler. Because of this, we make violations of an assumed contract ill-formed, no diagnostic
required.

A.2 terminate or abort

We have chosen std::abort for now on the advice of other committee members.

• Arguments for std::terminate

– There are no cases where the language currently injects any direct calls to std::abort.

– The use of std::terminate outside of exception handling has arguable already happened.

• Arguments for std::abort

– Contract violations should not call and confuse custom terminate handlers, especially
since the violation handler is already configurable.

– std::terminate as designed was for failures in the exception handling system, which
contract violations are not.

– Failure to use std::abort outside of exceptions before should not be continued now.

A.3 Side effects of predicates

The side effects of unchecked predicates being undefined was not a part of initial proposals, and
having predicates with side effects be usable for axiom-level contracts has some apparent use cases.
Because of that we should also be changing [dcl.attr.contract.syn]/6 to be limited only to checked
contracts. Similarly, a predicate that itself violates a checked contract should not be treated as
undefined behavior, so that should be added to the list of allowed side effects (on the assumption
that the contents of most useful violation handlers will contain side effects of one form or other).

It should be considered for the future that we narrow the undefined behavior of side effects to
wording that simply leaves the evaluation of the predicate unspecified, but the specifics of that
change can be left to future revisions of the standard. By leaving the majority of checked predicates
with side effects as undefined behavior we retain the ability to narrow that undefined behavior in
any way desired in the future.

8

A.4 Axiom Behavior

Axioms as originally advertised allowed for 2 features that have not been successfully transcribed
into the wording for the standard.

• An axiom should be able to reference functions that are declared but not defined in order
to reference verbs meaningful only to static analyzers or to the compiler at compile time.
Currently the compiler may always evaluate any predicate (checked or not) ad this prevents
that.

• An axiom should be able to reference functions with side effects and trust they will not
evaluate. All predicates with side effects are thus labeled undefined behavior. This includes
predicates that are “never executed at runtime” — i.e., axioms.

The previous section addresses the second issue. To fix the first issue, after discussing the details
with core, we have modified how “assumed” contracts are worded, and have added the statement that
any contract that cannot be checked in any build mode is a unevaluated operand. This maintains
the feature that if a predicate can be checked the build mode you choose does not impact what is
ODR used or not.

9

