Document: P1306R1
Revises: P1306R0
Date: 01-21-2019
Audience: EWG
Authors: Andrew Sutton (asutton@uakron.edu)
Sam Goodrick (sgoodrick@lock3software.com)
Daveed Vandevoorde (daveed@edg.com)

Expansion statements

Version history

r1 This paper unifies the different form of expansion statements, so that only one syntax is needed. We
have further refined the semantics to ensure that expansion can be supported for all traversable sequences,
including ranges of input iterators. We also added discussion about break and continue within expansions.

r0 The original version of this paper is P058910, Tuple-based for loops. We have modified the original
proposal to work with more destructurable objects including classes and parameter packs. We have also
added a constexpr-for version that a) makes the loop variable a constant expression in each repeated
expansion, and b) makes it possible to expand constexpr ranges. The latter feature is particularly
important for static reflection (see P1240r0).

Introduction

This paper proposes a new kind of statement that enables the compile-time repetition of a statement for
each element of a tuple, array, class, parameter pack, or range. Any facility that needs to traverse the
elements of a heterogeneous container inevitably duplicates this kind of repetition using recursively
instantiated templates, which allows some part of the repeated statement to vary (e.g., by type or constant)
in each instantiation.

While this behavior can be encapsulated in a single operation (e.g., Boost.Hana’s for _each template),
there are a number of reasons we would prefer language support. First, repetition is a fundamental
building block of algorithms. We should be able to express that concept directly rather than through
recursively instantiated templates.. Second, we’d like that repetition to be as inexpensive as possible.
Recursively instantiating templates generates a large number of template specializations, which can end
up consuming a lot of compiler memory and compile time. Finally, we’d like the ability to “iterate” over
both destructible classes and parameter packs, and both effectively require language support to implement
correctly.



Basic usage

Here is an example of iterating over the elements of a tuple using the Hana library:

auto tup = std::make_tuple(®, ‘a’, 3.14);
hana::for_each(tup, [&](auto elem) {
std::cout << elem << std::endl;

1)

The for_each function applies the generic lambda to print each element of the tuple in turn, by calling
the generic lambda. Each call instantiates a new function containing a call to cout for the corresponding
tuple element.

Using the feature described in this proposal, that code could be written like this:

auto tup = std::make_tuple(@, ‘a’, 3.14);
for... (auto elem : tup)
std::cout << elem << std::endl;

The for... statement expands the body of the loop once, for each element of the tuple. In other words, the
expansion statement above is equivalent to this:

auto tup = std::make_tuple(®, ‘a’, 3.14);
{

auto elem = std::get<0>(tup);

std::cout << elem << std::endl;

auto elem = std::get<1>(tup);
std::cout << elem << std::endl;

auto elem = std::get<2>(tup);
std::cout << elem << std::endl;

In other words, an expansion statement is not a loop. It is a repeated version of the loop body, in which
the loop variable is initialized to each successive element in the tuple. Because the loop variable is
re-declared in each version of the loop body, its type is allowed to vary. This makes expansion statements
a useful tool for defining a number of algorithms on heterogeneous collections.

An expansion statement allows expansion over the following:



Tuples (as above)

Arrays

Destructurable classes

Unexpanded argument packs
Constexpr ranges (described below)

Note that it is also possible to define expansion over a brace-init-list, but we have opted not to provide
that functionality at this time.

Expansion and static reflection

The ability to repeat statements for collections of entities is central to practically all useful reflection
algorithms. Here is an early generic implementation of Howard Hinnant’s Types Don t Know # proposal
(N3980).

template<HashAlgorithm H, StandardLayoutType T>
bool hash_append(H& algo, const T& t) {
constexpr meta::info members = meta::data_members of(reflexpr(T));
for... (constexpr meta::info member : members)
hash_append(h, t.idexpr(member));

Here, constexpr appears as decl-specifier of the loop variable member, meaning that in each
expansion, that value is a constant expression (i.e., suitable for use in a template argument list). This is
necessary since we that variable with the idexpr operator, which yields a resolved reference to the
corresponding data member. (This is similar to requesting a pointer-to-member, except that idexpr also
works with bit fields.)

Note that data_members_of returns a constexpr range: a forward-traversable sequence of
meta: :info values that describe the data members of T (or rather whatever type T becomes when the
template is instantiated. The fully expanded statement is roughly equivalent to this:

{
constexpr member® = *std::next(std::begin(members), 0);
hash_append(h, t.idexpr(membero));

}

{
constexpr memberl = *std::next(std::begin(members), 1);
hash_append(h, t.idexpr(member®));

}


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3980.html

constexpr memberK = *std::next(std::begin(members), K);
hash_append(h, t.idexpr(membero));

}

The expansion terminates after K expansions, where K is std: :distance(std: :begin(),
std::end()).

Note that expansion only occurs when the range is non-dependent (e.g., during template instantiation).

Without the ability to use an expansion statement, we need a recursive function template that traverses a
list of reflections. That implementation, based on an earlier version of the forthcoming static reflection
proposal is shown below:

// Recursive template
template<HashAlgorithm H, StandardLayoutType T, meta::info X>
requires meta::is_class(X)
hash_append_impl(H& h, T const& t) {
// Visit the current member (hash it if you can).
if constexpr(!meta::is_invalid(X)) {
if constexpr (meta::is_non_static_data_member(X))
hash_append(h, t.idexpr(X));
}
// Continue hashing until we run out of members.
if constexpr(!meta::is_invalid(meta::next(X)))
hash_append_impl<H, T, meta::next(X)>(h, t);

// Main interface
template<typename H, typename T>
std::enable_if t<std::is class<T>::value, void>
hash_append(H& h, T const& t) {

hash_append _impl<H, T, meta::front(reflexpr(T))>(h, t);
¥

In this implementation meta: : front and meta: :next are used to iterate (statically) over the
members of a declaration. They are not included in our current static reflection proposal since they are no
longer needed.

Break and continue

At this time, we are proposing to disallow break and continue within expansion statements. These
can be re-added as needed. Their meaning is easy to define and implement. Our main concern is that users



will confuse these statements as providing some kind of control over the expansion itself (they would
not).

Syntax and semantics

The syntax for an expansion statement is similar to that of a range-based for loop, except that . . .
follows the for keyword.

for ... (for-range-declaration : expansion-initializer) statement

An expansion-statement expands statically to a statement that is equivalent to the following pattern.

{
constexpr-specifier range-initializer-declaration __range = expansion-initializer
constexpr-specifier auto __begin = begin-expr;
constexpr-specifier auto __end = end-expr;
constexpr auto __iter_© = __begin;
<stop expansion if __iter_0 == __end>
{
for-range-declaration = get-expr(__iter_0)>;
Statement
}
constexpr auto __iter_1 = next-expr(__iter_90);
<stop expansion if __iter_1 == __end>
{
for-range-declaration = get-expr(__iter_1)>;
Statement
}
// ...repeatsuntil __iter_K == __end
}

The placeholder constexpr-specifier is the token constexpr if the for-range-declaration includes
constexpr in its decl-specifier-seq; otherwise, it is replaced by a space (i.e., not present). The
range-initializer-declaration is auto&& if the expansion-initializer has array or function type, and auto
otherwise (this prevents decay for prvalues of those types). The meaning of placeholder expressions
begin-expr, end-expr, get-expr, next-expr depend on the type of the expansion-initializer and the presence
of the constexpr keyword in the loop head.

If expansion-initializer contains unexpanded parameter packs, repetition is defined over an index I into
the argument pack, and the named expressions are:



begin-expr is Qu

end-expr is sizeof . . . (expansion-initializer)
get-expr(I) is the I"™ argument (expression) in the pack.
next-expr(L)is I + 1

Otherwise, if the substitution of the expansion-initializer into a range-based for statement of the form
for(auto&& __unspecified : expansion-initializer)
would succeed, the expansion is performed over a sequence of iterators I ranged over by
expansion-initializer, and the placeholder expressions are:
® begin-expr and end-expr are that of the range-based for loop,
o get-expr(l)is 1
o next-expr(I)is std::next(I)

Lastly, if the substitution of the expansion-initializer into a structured binding of the form
auto [IO@, I1, ..., IK] = expansion-initializer

would succeed, the expansion is performed over an integer index I into the sequence of members selected
for destructuring, and the placeholder expressions are:

® begin-expr is QU

o end-expris K

o get-expr(l) is the Ith entity named by the structured binding

o next-expr(l)isT + 1

Note that the form of the expansion is intended to be valid for any expandable entity used with the loop.
In the most general case, this emulates the hand-unrolling of range-based for loop over an input range
(i.e., a range with input iterators). Here, care must be taken not to “accidentally” consume range elements
by call std: :distance or advancing multiple elements in a single call to std: :next. For
unexpanded packs, and destructurable objects, the expansion can be trivially implemented in terms of a
simple integer index. A compiler might also optimize (for compile-time) certain range-based expansions
if they can determine the iterator category of the range.

Examples:

auto tup = std::make_tuple(0, ‘a’);
for... (auto& elem : tup)

elem += 1;
[[assert: tup == make_tuple(1, ‘b’)]];

A possible expansion is:

auto &&__range = tup;

{

auto& elem = std::get<0@>(__range);



elem += 1;

}
{
auto& elem = std::get<1>(__range);
elem += 1;
}
}
Here, the iterators have been elided since the “iterator” can be maintained internally by the
implementation.
template<typename... Ts>
void f(Ts&&... args) {
for... (const auto& x : args)

cout << X << ‘\n’;

void foo() {
f(e, ‘a’);
}

The instantiation of T generated from foo will have the expansion:

const auto& x = /* firstelementargs */;
cout << x << ‘\n’;

const auto& x = /* second elementin args */;
cout << X << ‘\n’;

Below is an example of a constexpr expansion:
constexpr std::vector<int> vec { 1, 2, 3 };
for... (constexpr int n : vec)

f<n>();

... and its expansion:



constexpr auto
constexpr auto

__range&& = vec;
__end = vec.end();

constexpr auto __iter_@ = vec.begin();

{
constexpr int n = *x__iter_0;
f<n>();
}
constexpr auto iter_1 = std::next(__iter_0);
{
constexpr int n = *__iter_1;
f<n>();
}
constexpr auto iter_2 = std::next(__iter_1);
{
constexpr int n = *x__iter_2;
f<n>();
}

}

Observations and notes

In the following subsections we discuss some specification details, potential additions, and
implementation notes.

Required header files

This feature does not require users to include additional header files to use the expansion facilities, just
like the range-based for loop. Many expansions are defined in terms of core language constructs and do
not require header files. Expanding over tuples does require the <tuple> header file, but that will almost
certainly have been included before the use of the first expansion-statement.

Enumerating loop bodies

It may be useful to access the instantiation count in the loop body. This could be achieved by using an
enumerate facility:

for... (auto x : enumerate(some_tuple)) {
// x has a count and a value

std::cout << x.count << “: “ << x.value << std::endl;

// The count is also a compile-time constant.



Using T = decltype(x);
std::array<int, T::count> a;

}

The enumerate facility returns a simple tuple adaptor whose elements are count/value pairs. This
facility should be relatively easy to implement.

Interaction with 1nitializer lists and parameter packs

The feature could be extended to allow brace-init-lists in the expansion-initializer. This is currently
ill-formed since it requires deduction from an initializer list. However, there may be some value in
supporting this syntax:

for... (auto x : {@, ‘a’, 3.14})
std::cout << x;

which would be equivalent to:

for... (auto x : make tuple(®, ‘a’, 3.14))
std::cout << x;

We are not formally proposing these extensions at this time since they would (could?) potentially
introduce a new form of template argument deduction in order to avoid an explicit rewrite to
make_tuple.

Implementation experience

At the time of writing, the foundations of the feature have been implemented in a fork of Clang 8.0.0,
except for the unified syntax (constexpr expansions still require the constexpr keyword instead of the...).
However, both statements use the same underlying implementation to choose salient operations for
expansion. The SSA-style expansion for input ranges is also unimplemented as it requires a non-trivial
change to our approach.

For these expansion-statements to work, the body of the loop must be parsed as if inside a template and
then repeatedly instantiated after the body is parsed. Moreover, names appearing in expressions within an
expansion loop body may not be ODR-used, even in a non-dependent context. If the expansion operand is
empty, the result of expansion is an empty statement: the statements, expressions, and declarations within
the body will be effectively erased from the program.



Related discussion

Apparently, there was an overlooked discussion about this feature on std.proposals in 2013
(https://groups.google.com/a/isocpp.org/forum/#!topic/std-proposals/vseNksuBvil).



