P1208R6Adopt source location for C++20

Robert Douglas, Corentin Jabot, Daniel Kriigler, Peter Sommerlad

2019-07-19
Document Number: | P1208R6
Audience: LWG
Date: 2019-07-19
Project: Programming Language C++

1 Changes and Discussions made in Cologne 2019

A summary of changes made in Cologne to the Latex version (this) by Robert, Daniel, and Peter.
This is also based on feedback given by Casey Carter.

Base the text on N4820.

Introduce exposition-only member variables to be able to name the return values of the
functions.

Reorder members and descriptions as in LF'TS V3. But we got rid of the separate code
representation of the header and class synopsis.

specify more properly the concepts/qualities of the type source_location.

We internally discussed if source_location should be trivially copyable or nothrow_copyable,
but only specified the obvious Cpp17zxx and swappable requirements for the type, because we
do not want to close the design space for implementors.

While preparing the update for the paper we discussed if the functions in source_location
are signal safe as with initializer_list, but did not dare to specify it at this point.

For the default constructor of source_location we reduced the guarantees from "implementation-
defined" values to "unspecified but valid" values, because we want to keep the door open for a
possible future where these values could potentially be defined in a more concrete manner.

provide explicit description of the intended represented values in the remarks section of
current ().

2 Instructions to the Editor

Introduce a new header <source_location> in subclause ([headers|): Table 19 ([tab:headers.cpp]),
and subclause ([compliance]) Table 22 ([tab:headers.cpp.fs|) between 17.7 and 17.8 add a new line:

1

‘17.){ Source Location <source_location>

Add the feature test macro __cpp_lib_source_location to Table 17
([tab:cpp.predefined.ft]) with the corresponding value for header <source_location>.

Create a new subclause 17.x (|reflection.src_loc|) in section 17 ([language.support|) before 17.8
(|[support.contract|) with the following content:

2.1 Class source_location [reflection.src_ loc]

The header <source_location> defines the class source_location that provides a means to obtain
source location information.

2.1.1 Header <source_location> Synopsis [reflection.src_loc.synop]

namespace std {
struct source_location {
// source location construction
static consteval source_location current() noexcept;
constexpr source_location() noexcept;

// source location field access

constexpr uint_least32_t line() const noexcept;
constexpr uint_least32_t column() const noexcept;
constexpr const char* file_name() const noexcept;
constexpr const char* function_name() const noexcept;

private:
uint_least32_t line_; // exposition only
uint_least32_t column_; // exposition only
const char* file_name_; // exposition only
const char* function_name_; // exposition only
s

}

The type source_location meets the Cppl7DefaultConstructible, Cpp17CopyConstructible, Cpp17CopyAssignable,

and Cppl7Destructible requirements.
Lvalues of type source_location are swappable ([swappable.requirements).
All of the following conditions are true:
— is_nothrow_move_constructible_v<source_location>
— is_nothrow_move_assignable_v<source_location>
— is_nothrow_swappable_v<source_location>
[Note: The intent of source_location is to have a small size and efficient copying.— end note|
The data members file_name_ and function_name_ always each refer to an NTBS.

The copy/move constructors and the copy/move assignment operators of source_location meet
the following postconditions: Given two objects 1hs and rhs of type source_location, where 1hs

(1.1)

(1.2)

is a

copy/move result of rhs, and where rhs_p is a value denoting the state of rhs before the

corresponding copy/move operation, then each of the following conditions is true:

strcmp(lhs.file_name(), rhs_p.file_name()) ==
strcmp(lhs.function_name(), rhs_p.function_name()) ==
lhs.line() == rhs_p.line()

lhs.column() == rhs_p.column()

2.1.2 source_location creation [reflection.src loc.creation]

static consteval source_location current() noexcept;

Returns:

— When invoked by a function call whose postfiz-expression is a (possibly parenthesized) id-

expression naming current, returns a source_location with an implementation-defined
value. The value should be affected by #line ([cpp.line|) in the same manner as for
__LINE__ and __FILE__. The values of the exposition-only data members of the returned
source_location object denote the following information:

line_ a presumed line number ([cpp.predefined|). Line numbers are presumed to be
1-indexed; however, an implementation is encouraged to use 0 when the line number
is unknown.

column_ an implementation-defined value denoting some offset from the start of the line
denoted by line_. Column numbers are presumed to be 1-indexed; however, an
implementation is encouraged to use 0 when the column number is unknown.

file_name_ a presumed name of the current source file (|cpp.predefined|) as an NTBS.

function_name_ a name of the current function such as in __func__([dcl.fct.def.general])

if any, an empty string otherwise.

— Otherwise, that is, when invoked in some other way, returns a source_location whose

data members are initialized with valid but unspecified values.

Remarks: When a brace-or-equal-initializer is used to initialize a non-static data member, any
calls to current should correspond to the location of the constructor or aggregate initialization

that initializes the member.

[Note: When used as a default argument ([dcl.fct.default]), the value of the source_location

will be the location of the call to current at the call site. — end note|

4 |Exzample:

struct s {

source_location member = source_location::current();

int other_member;

s(source_location loc = source_location::current())
: member (loc) // values of member will be from call-site

{}

s(int blather) : //walues of member should be hereabouts
other_member (blather)

{3

s(double) // values of member should be hereabouts
{3
s
void f(source_location a = source_location::current()) {

source_location b = source_location::current(); // wvalues in b represent this line

}

void g() {
£0; // £’s first argument corresponds to this line of code

source_location ¢ = source_location::current();
£(c); // £’s first argument gets the same values as c, above

}

— end example|
constexpr source_location() noexcept;

Effects: The data members are initialized with valid but unspecified values.
2.1.3 source_location field access [reflection.src_loc.fields]

constexpr uint_least32_t line() const noexcept;

Returns: line_.

constexpr uint_least32_t column() const noexcept;

Returns: column_.

constexpr const char* file_name() const noexcept;

Returns: file_name_.

constexpr const char* function_name() const noexcept;

Returns: function_name_.

	1 Changes and Discussions made in Cologne 2019
	2 Instructions to the Editor
	2.1 Class source_location [reflection.src_loc]

