
Paper Number: P1068R2 

Title: Vector API for random number generation 

Authors: Ilya Burylov <ilya.burylov@intel.com> 

 Pavel Dyakov <pavel.dyakov@intel.com> 

 Ruslan Arutyunyan <ruslan.arutyunyan@intel.com> 

 Andrey Nikolaev <andrey.nikolaev@intel.com> 

 

Audience: SG1 (Parallelism & Concurrency), SG6 (Numerics) 

Date: 2019-10-07 

I. Introduction 
C++11 introduced a comprehensive mechanism to manage generation of random numbers in the 

<random> header file. 

We propose to introduce an additional API based on iterators in alignment with algorithms definition 

and based on std::experimental::simd for low level optimizations. 

II. Revision history 
Key changes for R2 compared with R1: 

• Proposed API for switching between Sequentially consistent and Sequentially inconsistent 

vectorized results. 

• Added performance data measured on the prototype to show price for sequentially consistent 

results. 

• Extended description of the role of generate_canonical in distributions implementations. 

• Reworked Possible approaches to address the problem chapter to focus on two main 

approaches under consideration. 

Key changes for R1 compared with R0: 

• Extended the list of possible approaches with simd type direct usage. 

• Added performance data measured on the prototype. 

• Changed the recommendation to a combined approach. 

III. Motivation and Scope 
The C++11 random-number API is essentially a scalar one. Stateful nature and the scalar definition of 

underlying algorithms prevent auto-vectorization by compiler. 

However, most existing algorithms for generation of pseudo- [and quasi-]random sequences allow 

algorithmic rework to generate numbers in batches, which allows the implementation to utilize SIMD-

based HW instruction sets. 

Internal measurements show significant scaling over SIMD-size for key baseline Engines yielding an 

substantial performance difference on the table on modern HW architectures. 

Extension and/or modification of the list of supported Engines and/or Distributions is out of the scope of 

this proposal. 

IV. Libraries and other languages 
Vector APIs are common for the area of generation random numbers. Examples: 

* Intel(R) Math Kernel Library (Intel® MKL) 

mailto:ilya.burylov@intel.com
mailto:ilya.burylov@intel.com
mailto:pavel.dyakov@intel.com
mailto:pavel.dyakov@intel.com
mailto:ruslan.arutyunyan@intel.com
mailto:ruslan.arutyunyan@intel.com
mailto:andrey.nikolaev@intel.com
mailto:andrey.nikolaev@intel.com


  - Statistical Functions component includes Random Number Generators C vector based API 

* Java* java.util.Random 

  - Has doubles(), ints(), longs() methods to provide a stream of random numbers 

* Python* NumPy* library 

  - NumPy array has a method to be filled with random numbers 

* NVIDIA* cuRAND 

  - host API is vector based 

Intel MKL can be an example of the existing vectorized implementation for verity of engines and 

distributions. Existing API is C [1] (and FORTRAN), but the key property which allows enabling 

vectorization is vector-based interface.  

Another example of implementation can be intrinsics for the Short Vector Random Number Generator 

Library [2], which provides an API on SIMD level and can be considered an example of internal 

implementation for proposed modifications. 

V. Problem description 
Main flow of random number generation is defined as a 3-level flow. 

User creates Engine and Distribution and calls operator() of Distribution object, providing Engine as a 

parameter: 

 

operator() of a Distribution typically (but not necessarily so) implements scalar algorithm and calls 

generate_canonical(), passing Engine object further down: 

 

It is necessary to note, that C++ standard does not require calling generate_canonical() function inside 

any distribution implementation and it does not specify the number of Engine numbers per distribution 

number. Having said that, 3 main standard library implementations share the same schema, described 

here. 

generate_canonical() has a main intention to generate enough entropy for the type used by 

Distribution, and it calls operator() of an Engine one or more times (number of times is a compile-time 

constant): 

 

uniform_real_distribution::operator()(_URNG& __gen)

{

return (b() - a()) * generate_canonical<_RealType>(__gen) + a();

}

_RealType generate_canonical(_URNG& __gen())

{

…

_RealType _Sp = __gen() - _URNG::min();

for (size_t __i = 1; __i < __k; ++__i, __base *= _Rp)

_Sp += (__gen() - _URNG::min()) * __base;

return _Sp / _Rp;

}



operator() of an Engine is (almost) always stateful, with non-trivial dependencies between iterations, 

which prevents any auto-vectorization: 

 

Operator() of most distributions can be implemented in a way, which compiler can inline and auto-

vectorize. generate_canonical() adds additional challenge for the compiler due to loop, but it is 

resolvable. Operator() is the key showstopper for the auto-vectorization. 

VI. Iterators-based API 
The following API extension is targeting to cover generation of bigger chunks of memory with internal 

optimizations hidden inside implementation. 

API of Engines and Distributions is extended with iterators based API. 

std::array<double, arrayLength> stdArray; 

std::experimental::minstd_rand0                      genStd(555); 

std::experimental::uniform_real_distribution<double> disFloat(0.0, 1.0); 

disFloat(stdArray.begin(), stdArray.end(), genStd); 

The output of this function may or may not be equivalent to the scalar calls of the scalar API: 

for(double& d : arrayLength) { 

    d = distFloat(genStd); 

} 

Sequentially consistent result can be a valuable property for the application, thus we introduce 

ExecutionPolicy based API.  

template< class RealType = double, 

          class ExecutionPolicy = std::sequenced_policy > 

class uniform_real_distribution; 

Two policies support: 

• class sequenced_policy 

o Provides sequentially consistent result 
• class unsequenced_policy 

o The results is not necessarily sequentially consistent 

See Performance results chapter for performance implications. 

VII. std::experimental::simd-based API 
The following API extension is targeting to cover fine-grain optimization on user side, providing low-level 

optimization blocks. 

  

mersenne_twister_engine<…>::operator()()

{

const size_t __j = (__i_ + 1) % __n;

…

const result_type _Yp = (__x_[__i_] & ~__mask) | (__x_[__j] & __mask);

const size_t __k = (__i_ + __m) % __n;

__x_[__i_] = __x_[__k] ^ __rshift<1>(_Yp) ^ (__a * (_Yp & 1));

result_type __z = __x_[__i_] ^ (__rshift<__u>(__x_[__i_]) & __d);

__i_ = __j;

…

return __z ^ __rshift<__l>(__z);

}



std::array<double, arrayLength> stdArray; 

using simd32d = std::experimental::fixed_size_simd<double, 32>; 

std::experimental::minstd_rand0 genStd( 555 ); 

std::experimental::uniform_real_distribution<simd32d, 

                                             std::execution::unsequenced_policy> 

                                              disSimd(0.0, 1.0); 

for (int j = 0; j < arrayLength; j += simd32d::size()) { 

    simd32d s = disSimd(genStd); 

    for (int k = 0; k < simd32f::size(); k++) 

        stdArray[j+k] = s[k]; 

} 

int tail = arrayLength % simd32d::size(); 

if( tail > 0 ) { 

    simd32d s = disSimd(genStd); 

    for (int k = 0; k < tail; k++) 

        stdArray[arrayLength – tail + k] = s[k]; 

} 

The output of single operator() will be equivalent to the following sequence of the scalar API calls if 

std::execution::sequenced_policy is used in Distribution type: 

simd32d s{}; 

for (int j = 0; j < simd32d::size(); j++) { 

    s[j] = distFloat(genStd); 

} 

VIII. Design considerations 

a) Numerical results and generate_canonical 
C++ standard does not prescribe using generate_canonical for distribution implementation, but it is a 

common practice to implement it via the call of the function. Which results in using to consecutive 

numbers from 32-bits Engines for double-precision distributions. 

Assuming we have a simd size equal simd_size,  engine values e[i=0..7] and distribution values 

d[j=0..3]. 

Scalar implementation will use values e[k*2] and e[k*2+1] for d[k] value. 

It may be more performant to use e[(k/simd_size)*simd_size*2 + k%simd_size] and 

e[(k/simd_size)*simd_size*2 + k%simd_size + simd_size] (we use k-th value of first 

generated simd and k-th value of second generated simd), which is not only different from previous one, 

but also simd_size dependent. 

API of generate_canonical() function does not fit the usage within proposed implementations, thus it is  

not used, but its behavior is reproduced. Performance of the implementation is not optimal in that case. 

b) Numerical results and normal distribution 
All key standard libraries use the acceptance-rejection method for implementation of normal 

distribution, which implies an internal loop with generation of a pair of uniform values and checking if 

they pass some criteria: 

uniform_real_distribution<result_type> _Uni(-1, 1); 

do { 

    __u = _Uni(__g); 

    __v = _Uni(__g); 

    __s = __u * __u + __v * __v; 

} while (__s > 1 || __s == 0); 

… 

Such implementation is not friendly for SIMD-based vectorization. There are other methods possible like 

Box-Muller method [3] or inverse transform method [4]. 



Performance of sequentially consistent result is affected, if implemented in alignment with acceptance-

rejection method. 

IX. Performance results 
Implementation approaches were prototyped in part of Distribution API (and Engine API, where 

required for the usecase). Short Vector Random Number Generator Library [2] was used as an 

underlying vectorization engine. LLVM* libc++ 8.0 implementation was used as a baseline 

implementation. 

std::minstd_rand0 was chosen as an Engine (generated numbers were verified to be bit-to-bit 

identical with LLVM baseline implementation). 

Two benchmarks were chosen to collect performance data. 

Benchmarks compiled with Intel® C++ Compiler 19.0, measured on Intel® Xeon® Silver 4116 CPU @ 

2.10GHz. 

a) Fill std::array benchmark 
This is an implementation of reference benchmark: 

std::array<float, 128> stdArray; 

std::minstd_rand0                       genStd(555); 

std::uniform_real_distribution<float>   disFloat(0.0f, 1.0f); 

for (int j=0; j < 128; ++j) 

    stdArray[j] = disFloat(genStd); 

The difference in implementation of the benchmark is discussed in possible approaches chapter. 

 

 

The results show up to 6x speedup, with options a-d) show comparable performance. 

b) Monte Carlo Pi estimation benchmark 
This is an implementation of reference benchmark: 

    int nsamples = 128000000; 

    std::minstd_rand0                       genStd( 555 ); 

    std::uniform_real_distribution<float>   disFloat( 0.f, 1.f ); 

 

    int dbUnderCurve = 0; 

 



    for (int i = 0; i < nsamples; ++i) 

    { 

        float dbX = disFloat(genStd); 

        float dbY = disFloat(genStd); 

        if ( dbX*dbX + dbY*dbY <= 1.0 ) 

            dbUnderCurve++; 

    } 

 

    float dbPiEst = 1.f * dbUnderCurve / nsamples * 4.f; 

 

 

 

This benchmark showed different requirements needed for user level tuning of the implementation: 

• Straightforward usage of iterators-based API results in generation of all required random 

numbers in the intermediate buffer, which improves the performance from the baseline, but 

has additional potential for results bufferization on user side to reuse CPU L1 cache 

• Simd-based API requires low-level programming by API definition 

c) Sequential consistency impact (on fill std::array benchmark) 
Simd-based API was used, to compare the impact of sequential consistency requirement on the 

performance of vectorized version. Double-precision distributions were used for this case (which implies 

generate_canonical function usage, as described in previous sections). 



 

Sequential consistency result is 30% slower in case of uniform distribution. 

Sequential consistency result is 8% slower in case of exponential distribution. 

Sequential consistency result is 2.3x slower in case of normal distribution (inverse transform method 

was used for optimal vectorization). If baseline implementation be changed to inverse transform 

method, the impact will be similar to exponential distribution numbers 

As it is seen from graphs, using only single 32-bit engine value provides additional performance benefits 

and remains valid from perspective of existing C++ standard. 

X. Recommendation 
Proceed further with both approaches, using SIMD-based approach as a low level building block for 

iterators-based API. 

XI. Impact on the standard 
This is a library-only extension. It adds new member functions to some classes. Due to changes in list of 

template parameters of distributions, this change brings in an ABI change, localized to random numbers 

generation functionality. 

XII. References 
1. Intel MKL documentation: 

https://software.intel.com/en-us/mkl-developer-reference-c-2019-beta-basic-generators 

2. Intrinsics for the Short Vector Random Number Generator Library 

https://software.intel.com/en-us/node/694866 

3. Box-Muller method 

https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform 

4. Inverse transform sampling 

https://en.wikipedia.org/wiki/Inverse_transform_sampling 

  

https://software.intel.com/en-us/mkl-developer-reference-c-2019-beta-basic-generators
https://software.intel.com/en-us/mkl-developer-reference-c-2019-beta-basic-generators
https://software.intel.com/en-us/node/694866
https://software.intel.com/en-us/node/694866
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
https://en.wikipedia.org/wiki/Inverse_transform_sampling
https://en.wikipedia.org/wiki/Inverse_transform_sampling


Legal Disclaimer & Optimization Notice 

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY 

ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. 

INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED 

WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO 

FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, 

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. 

Software and workloads used in performance tests may have been optimized for performance only on 

Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using 

specific computer systems, components, software, operations and functions.  Any change to any of 

those factors may cause the results to vary.  You should consult other information and performance 

tests to assist you in fully evaluating your contemplated purchases, including the performance of that 

product when combined with other products.  

Copyright © 2019, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, 

Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. 

Optimization Notice 

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for 

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and 

SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or 

effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-

dependent optimizations in this product are intended for use with Intel microprocessors. Certain 

optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer 

to the applicable product User and Reference Guides for more information regarding the specific 

instruction sets covered by this notice. 

Notice revision #20110804 

 

 


