
Document number: P0940R3
Date: 2019-10-07 (Belfast)
Project: Programming Language C++, SG1
Authors: Michael Wong, Olivier Giroux
Email: ​michael@codeplay.com​, ogiroux@gmail.com
Reply to: michael@codeplay.com
​

Concurrency TS is growing: Concurrent
Utilities and Data Structures

Change log 1

Introduction 2

Concurrency TS2 2

Organization Proposal 3

Current and Proposed future Structure 3

Acknowledgement 6

References 6

Change log

R3 - removed moving thread clause 32, added origin of clauses and start new section on
Concurrency TS3, moved dfiber_context to clause 17 where coroutines are
R2 - adds Clause 33.7 for Cooperative User-Mode Threads such as fiber_context
R1 - removed Shared_ptr based on JAX discussion

- Changed Contention to Synchronization
- Import in thread library which has futures to replace the original futures section
- Rebase this to latest Draft N4741

R0 - initial proposal

mailto:michael@codeplay.com

Introduction

This is a proposal for a draft new section to the C++ Standard to support SG1 Concurrency
features. We foresee a number of upcoming features for inclusion. We also foresee some
features in existing sections that are concurrency related that is worth moving into this new
section.

There is no wording yet until we agree on the structure of the reorganization.

Concurrency TS2
A large number of Concurrency features are coming for C++20. This is because Concurrency
TS1 was not added to C++17. However some of the features in it has changed. There are also
many new features aiming for Concurrency TS2. Let us recap.

Concurrency TS1 was published in Jan 19, 2016[P0159] but still too late for C++17. It contains

● atomic_shared_ptr and atomic_weak_ptr class templates
● Latches and barriers
● Improvements to std::future<T> and Related APIs

Since its publication and through usage feedback, several of these facilities have been
rethought. In a recent SG1 meeting in Toronto, Atomic_shared_ptr is now atomic<shared<ptr>>.
Latches and barriers is undergoing a partial redesign to split the arrive/wait facilities. Even
futures is being redesigned to serve the needs of executors, TLS, and other facilities better.

Concurrency TS2 is an ongoing WIP but should contain the following which has been making its
way through WG21/SG1:

● Executors that links concurrency and parallelism constructs with different execution
resources. There is a possibility that this may split off into its own TS.

● Data structures such as Concurrent queues, counters, Synchronized<T>, Atomic_ref<T>
● Several synchronization primitives for locked-free programming on concurrent data

structures. These are cell, hazard ptr and RCU. These extends the existing shared_ptr
and the proposed atomic_shared_ptr which all have safe reclamation facilities. As such
we also propose moving shared_ptr and atomic<shared<ptr>> to this new location. We
suspect this part may be controversial, so would ask for discussion on this topic.

● Asymmetric fences
●

Given the proliferation of these and other facilities, as Concurrency TS editor, and before we
move sections and inject new wordings, we propose the following new chapter to handle these
concurrency utilities for Concurrency TS2 and TS1.

At this point, there is no plan to change or update Concurrency TS1. However, not all may
agree with that. We would also invite a discussion on this in the upcoming meeting.

Organization Proposal

We rebase the discussion to the latest Draft N4830. From JAX review there was consensu to
continue in this direction, but also

● Keep clause 32 thread support where it is
● Keep shared_ptr where it currently is, but move atomic<shared<ptr>> from Clause 20.
● Add Fiber_context to Clause 17 coroutines

Current and Proposed future Structure

Current Draft N4830 Future C++ Standard
(Bold are new sections)

● 32 Thread Support
○ 32.1 General
○ 32.2 Requirements
○ 32.3 Stop tokens
○ 32.4 Threads
○ 32.5 Mutual exclusion
○ 32.6 Condition variables
○ 32.7 Semaphore

■ 32.7.1 Header
<semaphore>
synopsis

■ Class template
counting
_semaphore

○ 32.8 Coordination Types
■ 32.8.1 Latches
■ 32.8.1 Header

<latch> synopsis
■ 32.8.3 Class latch

■ 32.8.4 Barriers
○ 32.9 Futures

● ● 33: Concurrency Utilities Library
○ 33.1 General Concepts

■ 33.1.1 Thread
Support

■ 33.1.2 Executor
Support

 ● 33.3 Executor Support
○ 33.3.1 Executors in-depth

● 31 Atomic operations library
○ 31.1 General
○ 31.2 Header <atomic>

synopsis
○ 31.3 Type Aliases
○ 31.4 Order and

consistency
○ 31.5 Lock-free property
○ 31.6 Waiting and notifying
○ 31.7 Class template

atomic_ref
■ 31.7.1 Operations
■ 31.7.2

Specializations for
integral types

■ 31.7.3
Specializations for
floating-point types

■ 31.7.4 Partial
specialization for
pointers

■ 31.75 Member
operators common
to integers and
pointers to objects

○ 31.8 Class template atomic
○ 31.9 Non-member

functions
○ 31.10 Flag type and

operations
○ 31.11 fences

● 33.4 Data structures
○ 33.5.1 Concurrent queue
○ 33.5.2 Concurrent

counters
○ 33.5.3 Synchronized<T>
○ 33.5.4 Atomic_ref<T>

● 20.11 Smart Pointers
○ 20.11.8 Atomic

specializations for smart
pointers

■ 20.11.8.1 Atomic
specialization for
shared_ptr

■ 20.11.8.2 Atomic
specialization for
weak_ptr

● 33.5 Safe Reclamation
○ 33.6.1 Atomic

specializations for smart
pointers

■ 33.6.1.1 Atomic
specialization for
shared_ptr

■ 33.6.1.2 Atomic
specialization for
weak_ptr

○ 33.6.2 Latest (previously
Snapshot/Cell)

○ 33.6.3 RCU
○ 33.6.4 Hazard Pointers

● 17.12 Coroutines
○ 17.12.1 Header

<coroutines>
○ 17.12.2 Coroutine traits
○ 17.12.3 Class template

coroutine_handle
○ 17.12.4 No-op coroutines
○ 17.12.5 Trivial awaitables

● 17.14 Cooperative User-Mode
Threads

○ 17.14.1 Header
<fiber_context> synopsis

○ ...

The reason I am interested in moving atomic<shared<ptr>> into the section on
concurrency in some order with Safe Reclamation is that they are actually shared
concurrency structures. Shared_ptr exists where it does (Clause 23.11 Smart Pointer)
because at the time, it was delivered with the Boost Smart pointer as a package. At the
JAX meeting, there was consensus to not include it here. In this paper [P0233], the
authors illustrate in the table in Section 7 a comparison of the capabilities between the
various facilities for Reclamation. Reference Counting is the implementation behind
shared_ptr and Split reference Counting (or Reference Counting with DCAS) is the
implementation behind atomic_shared_ptr. These have many capabilities similar to
Hazard Pointers, Cell and RCU differing only in the performance and lock-free
implications.

We would ask SG1 to give guidance on this structure reorganization at the next meeting.

Acknowledgement
The author wishes to thank Maged Michael and Paul Mckenney for the comparison and early
feedback. We thank SG1 for feedback.

References
[P0159] ​Programming Languages — Technical Specification for C++ Extensions for Concurrency
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html
[P0233] Hazard Pointers: Safe Reclamation for Optimistic Concurrency
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0233r6.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0159r0.html

