
p0448r2 - A strstream replacement using span<charT> as buffer

Peter Sommerlad

2019-01-21

Document Number: p0448r2 (N2065 done right?)
Date: 2019-01-21
Project: Programming Language C++
Audience: LEWG/LWG

1 History

Streams have been the oldest part of the C++ standard library and especially strstreams that can
use pre-allocated buffers have been deprecated for a long time now, waiting for a replacement. p0407
and p0408 provide the efficient access to the underlying buffer for stringstreams that strstream
provided solving half of the problem that strstreams provide a solution for. The other half is using a
fixed size pre-allocated buffer, e.g., allocated on the stack, that is used as the stream buffers internal
storage.

A combination of external-fixed and internal-growing buffer allocation that strstreambuf provides is
IMHO a doomed approach and very hard to use right.

There had been a proposal for the pre-allocated external memory buffer streams in N2065 but
that went nowhere. Today, with span<T> we actually have a library type representing such buffers
views we can use for specifying (and implementing) such streams. They can be used in areas where
dynamic (re-)allocation of stringstreams is not acceptable but the burden of caring for a pre-existing
buffer during the lifetime of the stream is manageable.

1.1 Changes from p0448r1
There was email discussion (Alisdair, Marshall, Titus and library mailing list) on semantics of move,
timing and wording of strstream removal. Therefore, this paper needs to be reconsidered with that
design respect by LEWG. I also acquired an additional paper number for a paper to propose the
strstream removal, so I drop it from here.

Marshall gave a list of review comments, I’d like to answer below:

— The synopsis shows these classes in std::experimental, while the class descriptions show std::
only. fixed, copy relict.

1

2 p0448r2 2019-01-21

— The synopsis should probably #include and <string>, since that’s where span and
char_traits come from. yes to not to <string> since the base class basic_streambuf
already has a dependency to char_traits, so no gain from mentioning <string>, but including
<streambuf> might be shown. Fixed. However, I found no precedence to such include directives
for stream classes in n4791 (may be a more modern style of specification introduced with C++11.
I guess mentioning a required identifier encourages implementors to make its definition available.

— Why a separate <spanstream> header? why not just put it in one of the existing ones? (we’re
adding headers at a surprising - to me - rate) First, because strstreams are also in their separate
header. Second, LEWG blessed/asked for it. Third, the base class already has the dependency
to char_traits.

— 7.4.2/1 is really generic: "Move assigns the base and members of *this from the base and
corresponding members of rhs." These words are almost identical to basic_istringstream move
assignment. Took the challenge and now use (more) code.

— 7.4.2/2 is mixing prose and code ; I suspect it would be better just as code. "Effects Equivalent
to: <two lines of code>" almost identical to basic_istringstream::swap wording. see above.

— Is the span that you pass to the constructors required to be non-empty? setbuf does have that
requirement. The latter is not really true: setbuf() is defined per streambuf subclass and we are
free to define it any way. most subclasses say that setbuf(0,0) has no effect, filebuf makes I/O
unbuffered and all say any other combination has implementation defined behavior. I do not
require a non-empty span, the stream is then just not particularly useful, except to behave as a
null object.

Alisdair raised the question if the spanbuf move operations should actually disassociate the buffer-
/stream from the original span, like (all?) other streambuf subclasses to when moved from.

"I have a huge concern about the definition of move construction and move assignment
for basic_spanbuf. The reason is that this is simply a copy operation, but we allowed
move semantics on streams/buffers following the unique ownership principle. In other
words, it would be very surprising that writing to the move-from stream would have any
impact on the moved-to stream."

Titus had the counter argument that one should not spend cycles on cleaning up moved from objects.

The streambuf base class can only be copied. filebuf and stringbuf both disassociate the right hand
side from its underlying data source that they both own. strstreambuf does neither support move or
copy.

I am torn, so I made that implementation defined.

Now to what really changed...

— rebase to n4791

— removed superfluous experimental namespace from synopsis

— added header includes in header synopsis for <streambuf> and (even so no other
iostream headers seem to do so).

p0448r2 2019-01-21 3

— introduce an exposition-only member span<charT> buf representing the span. This will make
wording, especially of move constructor more clear.

— make the wording of the move constructor more clear instead of hand waving about "locale
and other state of rhs".

— make wording of spanbuf/streams’s members more clear by code instead of weasel wording
obtained from stringbuf/streams.

— TODO

1.2 Changes from p0448r0

— provide explanation why non-copy-ability, while technically feasible, is an OK thing.

— remove wrong Allocator template parameter (we never allocate anything).

— adhere to new section numbering of the standard.

— tried to clarify lifetime and threading issues.

2 Introduction

This paper proposes a class template basic_spanbuf and the corresponding stream class templates
to enable the use of streams on externally provided memory buffers. No ownership or re-allocation
support is given. For those features we have string-based streams.

3 Acknowledgements

— Thanks to those ISO C++ meeting members attending the Oulu meeting encouring me to
write this proposal. I believe Neil and Pablo have been among them, but can’t remember who
else.

— Thanks go to Jonathan Wakely who pointed the problem of strstream out to me and to Neil
Macintosh to provide the span library type specification.

— Thanks to Felix Morgner for proofreading.

— Thanks to Kona LEWG small group discussion suggesting some clarifications and Thomas
Köppe for allowing me to use using type aliases instead of typedef.

4 Motivation

To finally get rid of the deprecated strstream in the C++ standard we need a replacement.
p0407/p0408 provide one for one half of the needs for strstream. This paper provides one for the
second half: fixed sized buffers.

[Example: reading input from a fixed pre-arranged character buffer:
char input[] = "10 20 30";
ispanstream is{span<char>{input}};

4 p0448r2 2019-01-21

int i;
is >> i;
ASSERT_EQUAL(10,i);
is >> i ;
ASSERT_EQUAL(20,i);
is >> i;
ASSERT_EQUAL(30,i);
is >>i;
ASSERT(!is);

—end example] [Example: writing to a fixed pre-arranged character buffer:
char output[30]{}; // zero-initialize array
ospanstream os{span<char>{output}};
os << 10 << 20 << 30 ;
auto const sp = os.span();
ASSERT_EQUAL(6,sp.size());
ASSERT_EQUAL("102030",std::string(sp.data(),sp.size()));
ASSERT_EQUAL(static_cast<void*>(output),sp.data()); // no copying of underlying data!
ASSERT_EQUAL("102030",output); // initialization guaranteed NUL termination

—end example]

5 Impact on the Standard

This is an extension to the standard library to enable deletion of the deprecated strstream classes
by providing basic_spanbuf, basic_spanstream, basic_ispanstream, and basic_ospanstream
class templates that take an object of type span<charT> which provides an external buffer to be
used by the stream.

It also proposes to remove the deprecated strstreams [depr.str.strstreams] assuming p0407 is also
included in the standard.

6 Design Decisions

6.1 General Principles
The design follows from the principles of the iostream library. If discussed a person knowledgable
about iostream’s implementation is favorable, because of its many legacy design decisions, that
would no longer be taken by modern C++ class designers. The behavior presented is part of what
"frozen" strstreams provide, namely relying on a pre-allocated buffer, without the idiosynchracy of
(o)strstream that automatically (re-)allocates a new buffer on the C-heap, when the original buffer
is insufficient for the output, which happens when such a buffer is not explicitly marked as "frozen".
This broken design is the reason it has long been deprecated, but its use with pre-allocated buffers
is one of the reasons it has not been banned completely, yet. Together with p0407 this paper gets
rid of it.

As with all existing stream classes, using a stream object or a streambuf object from multiple threads
can result in a data race. Only the pre-defined global stream objects cin/cout/cerr are exempt from

p0448r2 2019-01-21 5

this.

6.2 Older Open Issues (to be) Discussed by LEWG / LWG

— Should arbitrary types as template arguments to span be allowed to provide the underlying
buffer by using the byte sequence representation span provides. (I do not think so and some
people in LEWG inofficially agree with it). You can always get a span of characters from the
underlying byte sequence, so there is no need to put that functionality into spanbuf, it would
break orthogonality and could lead to undefined behavior, because the streambuf would be
aliasing with an arbitrary object.

— Should the basic_spanbuf be copy-able? It doesn’t own any resources, so copying like with
handles or span might be fine. Other concrete streambuf classes in the standard that own
their buffer (basic_stringbuf, basic_filebuf) naturally prohibit copying, where the base
class basic_streambuf provides a protected copy-ctor. I considered providing copyability for
basic_spanbuf, because the implementation is =default. Note, none of the stream classes in
the standard is copyable as are the stream classes provided here. Other streambuf subclasses are
not copyable, mainly because they either represent an external resource (fstreambuf), or because
one usually would not access it via its concrete type and only through its basic_streambuf
abstraction, i.e., by using an associated stream’s rdbuf() member function. I speculate that
another reason, why basic_stringbuf is not copyable, is that copying its underlying string
and re-establishing a new stream with it is possible and copying a streambuf felt not natural.
Therefore, I stick with my decision to prohibit copying basic_spanbuf.

6.3 Current (r2) Open Issues (to be) Discussed by LEWG / LWG

— Should we keep a separate header <spanstream> ? Where to put it instead?

— Is adding a default constructor for basic_spanbuf OK?

7 Technical Specifications

Insert a new section 28.x in chapter 28 [input.output] after section 28.8 [string.streams]

7.1 28.x Span-based Streams [span.streams]
This section introduces a stream interface for user-provided fixed-size buffers.

7.1.1 28.x.1 Overview [span.streams.overview]
The header <spanstream> defines four class templates and eight types that associate stream buffers
with objects of class span as described in [span]. [Note: A user of theses classes is responsible that
the character sequence represented by the given span outlives the use of the sequence by objects of
the classes in this chapter. Using multiple basic_spanbuf objects referring to overlapping underlying
sequences from different threads, where at least one spanbuf is used for writing to the sequence
results in a data race. —end note]

6 p0448r2 2019-01-21

Header <spanstream> synopsis
#include <streambuf>
#include

namespace std {
template <class charT, class traits = char_traits<charT> >

class basic_spanbuf;
using spanbuf = basic_spanbuf<char>;
using wspanbuf = basic_spanbuf<wchar_t>;
template <class charT, class traits = char_traits<charT> >

class basic_ispanstream;
using ispanstream = basic_ispanstream<char>;
using wispanstream = basic_ispanstream<wchar_t>;
template <class charT, class traits = char_traits<charT> >

class basic_ospanstream;
using ospanstream = basic_ospanstream<char>;
using wospanstream = basic_ospanstream<wchar_t>;
template <class charT, class traits = char_traits<charT> >

class basic_spanstream;
using spanstream = basic_spanstream<char>;
using wspanstream = basic_spanstream<wchar_t>;

}

7.2 28.x.2 Class template basic_spanbuf [spanbuf]
namespace std {

template <class charT, class traits = char_traits<charT> >
class basic_spanbuf

: public basic_streambuf<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// [spanbuf.cons], constructors:
basic_spanbuf() : basic_spanbuf(ios_base::in | ios_base::out) {}
explicit basic_spanbuf(ios_base::openmode which)

: basic_spanbuf(span<charT>(),which) {}
template <ptrdiff_t Extent>
explicit basic_spanbuf(

span<charT, Extent> span,
ios_base::openmode which = ios_base::in | ios_base::out);

basic_spanbuf(const basic_spanbuf& rhs) = delete;
basic_spanbuf(basic_spanbuf&& rhs) noexcept;

// [spanbuf.assign], assign and swap:
basic_spanbuf& operator=(const basic_spanbuf& rhs) = delete;
basic_spanbuf& operator=(basic_spanbuf&& rhs) noexcept;
void swap(basic_spanbuf& rhs) noexcept;

p0448r2 2019-01-21 7

// [spanbuf.members], get and set:
span<charT> span() const noexcept;
void span(span<charT> s) noexcept;

protected:
// [spanbuf.virtuals], overridden virtual functions:
int_type underflow() override;
int_type pbackfail(int_type c = traits::eof()) override;
int_type overflow (int_type c = traits::eof()) override;
basic_streambuf<charT, traits>* setbuf(charT*, streamsize) override;

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which
= ios_base::in | ios_base::out) override;

pos_type seekpos(pos_type sp,
ios_base::openmode which
= ios_base::in | ios_base::out) override;

private:
ios_base::openmode mode; // exposition only
span<charT> buf; // exposition only

};

template <class charT, class traits>
void swap(basic_spanbuf<charT, traits>& x,

basic_spanbuf<charT, traits>& y) noexcept;
}

1 The class basic_spanbuf is derived from basic_streambuf to associate possibly the input sequence
and possibly the output sequence with a sequence of arbitrary characters. The sequence is provided
by an object of class span<charT>.

2 For the sake of exposition, the maintained data is presented here as:

—(2.1) ios_base::openmode mode, has in set if the input sequence can be read, and out set if the
output sequence can be written.

—(2.2) span<charT> buf is the view to the underlying character sequence.

7.3 28.x.2.1 basic_spanbuf constructors [spanbuf.cons]

template <ptrdiff_t Extent>
explicit basic_spanbuf(

basic_span<charT, Extent> s,
ios_base::openmode which = ios_base::in | ios_base::out);

1 Effects: Constructs an object of class basic_spanbuf, initializing the base class with basic_-
streambuf() ([streambuf.cons]), initializing mode with which. Initializes the internal pointers
as if calling span(s).

basic_spanbuf(basic_spanbuf&& rhs) noexcept;

2 Effects: Move constructs from the rvalue rhs. This is accomplished by copy constructing the

8 p0448r2 2019-01-21

base class and initializing mode from rhs.mode and buf from rhs.buf. The sequence pointers
in *this (eback(), gptr(), egptr(), pbase(), pptr(), epptr()) obtain the values which rhs
had. It is implementation-defined wether rhs.buf.empty() returns true after the move.

3 Ensures: Let rhs_p refer to the state of rhs just prior to this construction.

—(3.1) span() == rhs_p.span()

—(3.2) eback() == rhs_p.eback()

—(3.3) gptr() == rhs_p.gptr()

—(3.4) egptr() == rhs_p.egptr()

—(3.5) pbase() == rhs_p.pbase()

—(3.6) pptr() == rhs_p.pptr()

—(3.7) epptr() == rhs_p.epptr()

—(3.8) getloc() == rhs_p.getloc()

7.3.1 28.x.2.2 Assign and swap [spanbuf.assign]

basic_spanbuf& operator=(basic_spanbuf&& rhs) noexcept;

1 Effects: After the move assignment *this has the observable state it would have had if it had
been move constructed from rhs (see [spanbuf.cons]).

2 Returns: *this.

void swap(basic_spanbuf& rhs) noexcept;

3 Effects: Equivalent to: basic_streambuf<charT, traits>::swap(rhs); std::swap(mode,rhs.mode);
std::swap(buf, rhs.buf).

template <class charT, class traits>
void swap(basic_spanbuf<charT, traits>& x,

basic_spanbuf<charT, traits>& y) noexcept;

4 Effects: As if by x.swap(y).

7.3.2 28.x.2.3 Member functions [spanbuf.members]

span<charT> span() const;

1 Returns: If mode == ios_base::out is true, returns span<charT>(pbase(),pptr()), other-
wise returns buf. [Note: In constrast to basic_stringbuf the underlying sequence can never
grow and will not be owned. An owning copy can be obtained by converting the result to
basic_string<charT>. —end note]

template<ptrdiff_t Extent>
void span(span<charT,Extent> s);

2 Effects: buf = s; Initializes the input and output sequences according to mode.
3 Ensures: If mode & ios_base::out is true, pbase() == s.data() and epptr() == pbase()

+ s.size() holds; in addition, if mode & ios_base::ate is true, pptr() == pbase() +

p0448r2 2019-01-21 9

s.size() holds, otherwise pptr() == pbase() is true. If mode & ios_base::in is true,
eback() == s.data(), and both gptr() == eback() and egptr() == eback() + s.size()
hold.

[Note: Using append mode does not make sense for span-based streams. —end note]

7.3.3 28.x.2.4 Overridden virtual functions [spanbuf.virtuals]
1 [Note: Since the underlying buffer is of fixed size, neither overflow, underflow or pbackfail can

provide useful behavior. —end note]

int_type underflow() override;

2 Returns: traits::eof().

int_type pbackfail(int_type c = traits::eof()) override;

3 Returns: traits::eof().

int_type overflow(int_type c = traits::eof()) override;

4 Returns: traits::eof().

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out) override;

5 Effects: Alters the stream position within one of the controlled sequences, if possible, as
indicated in Table 1[tab:spanbuf.seekoff.positioning].

Table 1 — seekoff positioning

Conditions Result
(which & ios_base::in) == ios_-
base::in

positions the input sequence (xnext is gptr(), xbeg is eback())

(which & ios_base::out) == ios_-
base::out

positions the output sequence (xnext is pptr(), xbeg is pbase())

(which & (ios_base::in |
ios_base::out)) ==
(ios_base::in |
ios_base::out)
and way == either
ios_base::beg or
ios_base::end

positions both the input and the output sequences

Otherwise the positioning operation fails.

6 For a sequence to be positioned, if its next pointer xnext (either gptr() or pptr()) is a null
pointer and the new offset newoff is nonzero, the positioning operation fails. Otherwise, the
function determines newoff as indicated in Table 2[tab:spanbuf.newoff.values].

10 p0448r2 2019-01-21

Table 2 — newoff values

Condition newoff Value
way == ios_base::beg 0
way == ios_base::cur pptr()-pbase() or

gptr()-eback().
way == ios_base::end (mode == ios_base::out)?

pptr()-pbase() :
buf.size()

7 If (newoff + off) < 0, or if (newoff + off) >= buf.size(), the positioning operation
fails. Otherwise, the function assigns xbeg + newoff + off to the next pointer xnext.

8 Returns: pos_type(newoff), constructed from the resultant offset newoff (of type off_type),
that stores the resultant stream position, if possible. If the positioning operation fails, or
if the constructed object cannot represent the resultant stream position, the return value is
pos_type(off_type(-1)).

pos_type seekpos(pos_type sp,
ios_base::openmode which

= ios_base::in | ios_base::out) override;

9 Effects: Equivalent to seekoff(off_type(sp), ios_base::beg, which).
10 Returns: sp to indicate success, or pos_type(off_type(-1)) to indicate failure.

basic_streambuf<charT, traits>* setbuf(charT* s, streamsize n);

11 Effects: If s and n denote a non-empty span this->span(span<charT>(s,n));
12 Returns: this.

7.4 28.x.3 Class template basic_ispanstream [ispanstream]
namespace std {

template <class charT, class traits = char_traits<charT>>
class basic_ispanstream

: public basic_istream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// [ispanstream.cons], constructors:
template <ptrdiff_t Extent>
explicit basic_ispanstream(

span<charT, Extent> span,
ios_base::openmode which = ios_base::in);

basic_ispanstream(const basic_ispanstream& rhs) = delete;

p0448r2 2019-01-21 11

basic_ispanstream(basic_ispanstream&& rhs) noexcept;

// [ispanstream.assign], assign and swap:
basic_ispanstream& operator=(const basic_ispanstream& rhs) = delete;
basic_ispanstream& operator=(basic_ispanstream&& rhs) noexcept;
void swap(basic_ispanstream& rhs) noexcept;

// [ispanstream.members], members:
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

span<charT> span() const noexcept;
template<ptrdiff_t Extent>

void span(span<charT> s) noexcept;
private:

basic_spanbuf<charT, traits> sb; // exposition only
};

template <class charT, class traits>
void swap(basic_ispanstream<charT, traits>& x,

basic_ispanstream<charT, traits>& y) noexcept;
}

1 The class basic_ispanstream<charT, traits> supports reading objects of class span<charT,
traits>. It uses a basic_spanbuf<charT, traits> object to control the associated span. For the
sake of exposition, the maintained data is presented here as:

—(1.1) sb, the spanbuf object.

7.4.1 28.x.3.1 basic_ispanstream constructors [ispanstream.cons]

template <ptrdiff_t Extent>
explicit basic_ispanstream(

span<charT, Extent> span,
ios_base::openmode which = ios_base::in);

1 Effects: Constructs an object of class basic_ispanstream<charT, traits>, initializing
the base class with basic_istream(&sb) and initializing sb with basic_spanbuf<charT,
traits>(span, which | ios_base::in) ([spanbuf.cons]).

basic_ispanstream(basic_ispanstream&& rhs);

2 Effects: Move constructs from the rvalue rhs. This is accomplished by initializing the base
basic_istream<charT, traits> from std::move(rhs) and initializing sb from std::move(rhs.sb).
Next basic_istream<charT, traits>::set_rdbuf(&sb) is called to install the contained
basic_spanbuf.

7.4.2 28.x.3.2 Assign and swap [ispanstream.assign]

basic_ispanstream& operator=(basic_ispanstream&& rhs);

1 Effects: Equivalent to: basic_istream<charT, traits>::swap(rhs); sb = std::move(rhs.sb).
2 Returns: *this.

12 p0448r2 2019-01-21

void swap(basic_ispanstream& rhs);

3 Effects: Equivalent to: basic_istream<charT, traits>::swap(rhs); sb.swap(rhs.sb).

template <class charT, class traits>
void swap(basic_ispanstream<charT, traits>& x,

basic_ispanstream<charT, traits>& y);

4 Effects: As if by x.swap(y).

7.4.3 28.x.3.3 Member functions [ispanstream.members]

basic_spanbuf<charT>* rdbuf() const noexcept;

1 Returns: const_cast<basic_spanbuf<charT>*>(&sb).

span<charT> span() const noexcept;

2 Returns: rdbuf()->span().

template<ptrdiff_t Extent>
void span(span<charT, Extent> s) noexcept;

3 Effects: Calls rdbuf()->span(s).

7.5 28.x.4 Class template basic_ospanstream [ospanstream]
namespace std {

template <class charT, class traits = char_traits<charT>>
class basic_ospanstream

: public basic_ostream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// [ospanstream.cons], constructors:
template <ptrdiff_t Extent>
explicit basic_ospanstream(

span<charT, Extent> span,
ios_base::openmode which = ios_base::out);

basic_ospanstream(const basic_ospanstream& rhs) = delete;
basic_ospanstream(basic_ospanstream&& rhs) noexcept;

// [ospanstream.assign], assign and swap:
basic_ospanstream& operator=(const basic_ospanstream& rhs) = delete;
basic_ospanstream& operator=(basic_ospanstream&& rhs) noexcept;
void swap(basic_ospanstream& rhs) noexcept;

// [ospanstream.members], members:
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

p0448r2 2019-01-21 13

span<charT> span() const noexcept;
template<ptrdiff_t Extent>

void span(span<charT> s) noexcept;
private:

basic_spanbuf<charT, traits> sb; // exposition only
};

template <class charT, class traits>
void swap(basic_ospanstream<charT, traits>& x,

basic_ospanstream<charT, traits>& y) noexcept;
}

1 The class basic_ospanstream<charT, traits> supports writing to objects of class span<charT,
traits>. It uses a basic_spanbuf<charT, traits> object to control the associated span. For the
sake of exposition, the maintained data is presented here as:

—(1.1) sb, the spanbuf object.

7.5.1 28.x.4.1 basic_ospanstream constructors [ospanstream.cons]

template <ptrdiff_t Extent>
explicit basic_ospanstream(

span<charT, Extent> span,
ios_base::openmode which = ios_base::out);

1 Effects: Constructs an object of class basic_ospanstream<charT, traits>, initializing
the base class with basic_ostream(&sb) and initializing sb with basic_spanbuf<charT,
traits>(span, which | ios_base::out) ([spanbuf.cons]).

basic_ospanstream(basic_ospanstream&& rhs) noexcept;

2 Effects: Move constructs from the rvalue rhs. This is accomplished by initializing the base
basic_ostream<charT, traits> from std::move(rhs) and initializing sb from std::move(rhs.sb).
Next basic_istream<charT, traits>::set_rdbuf(&sb) is called to install the contained
basic_spanbuf.

7.5.2 28.x.4.2 Assign and swap [ospanstream.assign]

basic_ospanstream& operator=(basic_ospanstream&& rhs) noexcept;

1 Effects: Equivalent to: basic_ostream<charT, traits>::swap(rhs); sb = std::move(rhs.sb).
2 Returns: *this.

void swap(basic_ospanstream& rhs) noexcept;

3 Effects: Equivalent to: basic_ostream<charT, traits>::swap(rhs); sb.swap(rhs.sb).

template <class charT, class traits>
void swap(basic_ospanstream<charT, traits>& x,

basic_ospanstream<charT, traits>& y) noexcept;

4 Effects: As if by x.swap(y).

14 p0448r2 2019-01-21

7.5.3 28.x.4.3 Member functions [ospanstream.members]

basic_spanbuf<charT>* rdbuf() const noexcept;

1 Returns: const_cast<basic_spanbuf<charT>*>(&sb).

span<charT> span() const noexcept;

2 Returns: rdbuf()->span().

template<ptrdiff_t Extent>
void span(span<charT, Extent> s) noexcept;

3 Effects: Calls rdbuf()->span(s).

7.6 28.x.5 Class template basic_spanstream [spanstream]
namespace std {

template <class charT, class traits = char_traits<charT>>
class basic_spanstream

: public basic_iostream<charT, traits> {
public:

using char_type = charT;
using int_type = typename traits::int_type;
using pos_type = typename traits::pos_type;
using off_type = typename traits::off_type;
using traits_type = traits;

// [spanstream.cons], constructors:
template <ptrdiff_t Extent>
explicit basic_spanstream(

span<charT, Extent> span,
ios_base::openmode which = ios_base::out);

basic_spanstream(const basic_spanstream& rhs) = delete;
basic_spanstream(basic_spanstream&& rhs) noexcept;

// [spanstream.assign], assign and swap:
basic_spanstream& operator=(const basic_spanstream& rhs) = delete;
basic_spanstream& operator=(basic_spanstream&& rhs) noexcept;
void swap(basic_spanstream& rhs) noexcept;

// [spanstream.members], members:
basic_spanbuf<charT, traits>* rdbuf() const noexcept;

span<charT> span() const noexcept;
template<ptrdiff_t Extent>

void span(span<charT> s) noexcept;
private:

basic_spanbuf<charT, traits> sb; // exposition only
};

template <class charT, class traits>
void swap(basic_spanstream<charT, traits>& x,

p0448r2 2019-01-21 15

basic_spanstream<charT, traits>& y) noexcept;
}

1 The class basic_spanstream<charT, traits> supports reading from and writing to objects of class
span<charT, traits>. It uses a basic_spanbuf<charT, traits> object to control the associated
span. For the sake of exposition, the maintained data is presented here as:

—(1.1) sb, the spanbuf object.

7.6.1 28.x.5.1 basic_spanstream constructors [spanstream.cons]

template <ptrdiff_t Extent>
explicit basic_spanstream(

span<charT, Extent> span,
ios_base::openmode which = ios_base::out | ios_bas::in);

1 Effects: Constructs an object of class basic_spanstream<charT, traits>, initializing the
base class with basic_iostream(&sb) and initializing sb with basic_spanbuf<charT, traits>(span,
which) ([spanbuf.cons]).

basic_spanstream(basic_spanstream&& rhs) noexcept;

2 Effects: Move constructs from the rvalue rhs. This is accomplished by initializing the base
basic_iostream<charT, traits> from std::move(rhs) and initializing sb from std::move(rhs.sb).
Next basic_istream<charT, traits>::set_rdbuf(&sb) is called to install the contained
basic_spanbuf.

7.6.2 28.x.5.2 Assign and swap [spanstream.assign]

basic_spanstream& operator=(basic_spanstream&& rhs) noexcept;

1 Effects: Equivalent to: basic_iostream<charT, traits>::swap(rhs); sb = std::move(rhs.sb).
2 Returns: *this.

void swap(basic_spanstream& rhs) noexcept;

3 Effects: Equivalent to: basic_iostream<charT, traits>::swap(rhs); sb.swap(rhs.sb).

template <class charT, class traits>
void swap(basic_spanstream<charT, traits>& x,

basic_spanstream<charT, traits>& y) noexcept;

4 Effects: As if by x.swap(y).

7.6.3 28.x.5.3 Member functions [spanstream.members]

basic_spanbuf<charT>* rdbuf() const noexcept;

1 Returns: const_cast<basic_spanbuf<charT>*>(&sb).

span<charT> span() const noexcept;

2 Returns: rdbuf()->span().

16 p0448r2 2019-01-21

template<ptrdiff_t Extent>
void span(span<charT, Extent> s) noexcept;

3 Effects: Calls rdbuf()->span(s).

8 Appendix: Example Implementations

An example implementation is available under the author’s github account at: https://github.
com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/p0448

https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/p0448
https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/p0448

	1 History
	1.1 Changes from p0448r1
	1.2 Changes from p0448r0

	2 Introduction
	3 Acknowledgements
	4 Motivation
	5 Impact on the Standard
	6 Design Decisions
	6.1 General Principles
	6.2 Older Open Issues (to be) Discussed by LEWG / LWG
	6.3 Current (r2) Open Issues (to be) Discussed by LEWG / LWG

	7 Technical Specifications
	7.1 28.x Span-based Streams [span.streams]
	7.2 28.x.2 Class template basic_spanbuf [spanbuf]
	7.3 28.x.2.1 basic_spanbuf constructors [spanbuf.cons]
	7.4 28.x.3 Class template basic_ispanstream [ispanstream]
	7.5 28.x.4 Class template basic_ospanstream [ospanstream]
	7.6 28.x.5 Class template basic_spanstream [spanstream]

	8 Appendix: Example Implementations

