Document Number: N4&835

Date: 2019-10-08

Revises: N4830

Reply to: Richard Smith
Google Inc

cxxeditor@gmail.com

Working Draft, Standard for Programming
Language C++

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
fomatting.

©ISO/IEC N4835

Contents

1 Scope 1
2 Normative references 2
3 Terms and definitions 3
4 General principles 6
4.1 Implementation compliance 6
4.2 Structure of this documento 7
4.3 Syntax notation oL 7
4.4 Acknowledgments Lo 8
5 Lexical conventions 9
5.1 Separate translation Lo 9
5.2 Phases of translation 9
5.3 Character setS e e e e 10
5.4 Preprocessing tokens L L 11
5.5 Alternative tokens L 12
5.6 Tokens L e e 12
5.7 Commentso 12
5.8 Header names e e 12
5.9 Preprocessing numbers L 13
5.10 Identifiers L 13
511 Keywords e 14
5.12 Operators and punctuators L 14
5.13 Literals L e e 15
6 Basics 24
6.1 Preamble e 24
6.2 Declarations and definitions 24
6.3 One-definition rule e 26
6.4 SCOPE .« o o 30
6.5 Name lookup 36
6.6 Program and linkage Lo 49
6.7 Memory and objects L 51
6.8 Types . . o 64
6.9 Program execution L e 70
7 Expressions 82
7.1 Preamble e 82
7.2 Properties of expressions 83
7.3 Standard conversionso e e 85
7.4 Usual arithmetic conversions L L 90
7.5 Primary expressions L L e 91
7.6 Compound expressionsot e e 106
7.7 Constant eXpressions v ot e e e e e e e e e e e e 136
8 Statements 142
8.1 Preamble e 142
8.2 Labeled statement e e e 143
8.3 Expression statement oL Lo 143
8.4 Compound statement or block L 143
8.5 Selection statements oL 143
8.6 Iteration statements L L e 145
Contents ii

©ISO/IEC N4835

8.7 Jump statements oL L 148
8.8 Declaration statement oL L L 149
8.9 Ambiguity resolution L 150
9 Declarations 152
9.1 Preamble 152
9.2 Specifiers e 153
9.3 Declarators e e e e e e 170
9.4 Imitializers L 184
9.5 Function definitions L 200
9.6 Structured binding declarations oL 206
9.7 Enumerations e 206
9.8 Namespaces v v v i e e e e e e 210
9.9 Theusing declaration 216
9.10 The asm declaration L 222
9.11 Linkage specifications L 222
9.12 Attributes e 224
10 Modules 232
10.1 Module units and purviewso L e 232
10.2 Export declaration Lo 233
10.3 Import declaration 236
10.4 Global module fragment oL 237
10.5 Imstantiation context L. 239
10.6 Reachability e 240
11 Classes 242
11.1 Preamble o e 242
11.2 Properties of classes 243
11.3 Class names v v it e e e e e e e e e e e 244
11.4 Classmembers e e e e e e 245
115 Unions oo oo 267
11.6 Local class declarations L 269
11.7 Derived classes oL e e 270
11.8 Member name lookup e 278
11.9 Member access control e e e 280
11.10 Imitialization e e e e 289
11,11 Comparisons o vt e e e 300
11.12 Free store o o e e e 303
12 Overloading 305
12.1 Preamble e 305
12.2 Overloadable declarations L 305
12.3 Declaration matching L 307
12.4 Overload resolution e 308
12.5 Address of overloaded function L 330
12.6 Overloaded operators L 331
12.7 Built-in operators oL e 335
13 Templates 339
13.1 Preamble o . 339
13.2 Template parameters Lo e 341
13.3 Names of template specializations L o o L 344
13.4 Template arguments Lo 346
13.5 Template constraints 352
13.6 Typeequivalence e 355
13.7 Template declarations 356
13.8 Name resolution oL L e 374
13.9 Template instantiation and specialization oo 390
Contents iii

©ISO/IEC N4835

13.10 Function template specializations L oo 403
13.11 Deduction guides oL L e 421
14 Exception handling 422
14.1 Preamble e 422
14.2 Throwing an exception e e e e e 423
14.3 Constructors and destructors 424
14.4 Handling an exception L e e 425
14.5 Exception specificationso 426
14.6 Special functions oL L 429
15 Preprocessing directives 431
15.1 Preamble e 431
15.2 Conditional inclusion L 432
15.3 Source file inclusion 435
15.4 Header unit importationo 436
15.5 Global module fragment Lo 437
15.6 Macro replacement oL 437
15.7 Line control L e 442
15.8 Error directive 443
15.9 Pragma directive L e 443
15.10 Null directive e e e e 443
15.11 Predefined macro names Lo 443
15.12 Pragma operator e 445
16 Library introduction 447
16.1 General 447
16.2 The C standard library Lo 448
16.3 Definitions 448
16.4 Method of description L 451
16.5 Library-wide requirementso e 457
17 Language support library 477
17.1 General e 477
17.2 Common definitions e e e e 477
17.3 Implementation properties 481
174 Integer types e e 491
17.5 Start and termination Lo L 492
17.6 Dynamic memory managementot e e e e e 493
17.7 Typeidentification L 500
17.8 Source location L 501
17.9 Exception handling L 503
17.10 Imitializer lists oL 507
17.11 CompariSons v v v e e e e e e e 508
17.12 Coroutines o o e e 518
17.13 Other runtime support L 522
18 Concepts library 525
18.1 General L e e e e 525
18.2 Equality preservation 525
18.3 Header <concepts> SYNopsiS. o i et e e 526
18.4 Language-related concepts Lo e 528
18.5 CompariSon CoNCepts v v vt e e e e e e e 533
18.6 Object conceptso e 535
18.7 Callable concepts L 536
19 Diagnostics library 537
19.1 General L e 537
19.2 Exception classes 537
Contents iv

©ISO/IEC N4835

19.3 0 ASSErtions 540
19.4 Error numbers Lo e e e 540
19.5 System error support L. e e 542
20 General utilities library 551
20.1 General e 551
20.2 Utility components L 551
20.3 Compile-time integer sequenceso 555
204 Pairs e 555
20.5 Tuples . . . e 559
20.6 Optional objects 569
20.7 Variants L e 581
20.8 Storage for any type e 592
20.9 Bitsets L e 597
20.10 Memory e e e 603
20.11 Smart pointers e 625
20.12 Memory TESOUTCES . . « « v v v v v v e v e e e e e e e e e e e e e e e e e 652
20.13 Class template scoped_allocator_adaptor v ot vttt 661
20.14 Function objects 664
20.15 Metaprogramming and type traitso 687
20.16 Compile-time rational arithmetic L o 712
20.17 Class type_index oo e 714
20.18 Execution policies L 716
20.19 Primitive numeric conversionso oo e e 77
20.20 Formatting 720
21 Strings library 737
21.1 General 737
21.2 Character traits oL L 737
21.3 String classes L e 742
21.4 String view classes L. 768
21.5 Null-terminated sequence utilities oL oL 7
22 Containers library 782
22.1 General . . .o 782
22.2 Container requirements Lo e e e 782
22.3 Sequence containers Lol e 815
22.4 Associative containers 842
22.5 Unordered associative containers Lo 860
22.6 Container adaptorso e e 881
227 VIEWS . . o o e e e 889
23 Iterators library 896
23.1 General . . . L e 896
23.2 Header <iterator> Synopsis v v v it e 896
23.3 Tterator requirements L. L Lo L e e e e 902
23.4 Tterator primitives L L e 922
23.5 Tterator adaptors L e 925
23.6 Stream iterators. e 946
23.7 Range access e 951
24 Ranges library 954
24.1 General 954
24.2 Header <ranges> Synopsiso 954
24.3 Range access e 958
244 Rangerequirements Lo 961
24.5 Range utilitieso 964
24.6 Range factories 970
24.7 Range adaptors L e 977
Contents v

©ISO/IEC N4835

25 Algorithms library 1015
25.1 General e 1015
25.2 Algorithms requirements oL 1015
25.3 Parallel algorithms 1017
25.4 Header <algorithm> Synopsis« « v v v v v v vt e e 1020
25.5 Non-modifying sequence operations L0000 1056
25.6 Mutating sequence operations Lo oL oo 1067
25.7 Sorting and related operations oL oL L 1083
25.8 Header <numeric> Synopsiso 1110
25.9 Generalized numeric operations 1113
25.10 Clibrary algorithms 1122

26 Numerics library 1123
26.1 General 1123
26.2 Numeric type requirements Lo e 1123
26.3 The floating-point environment 1123
26.4 Complex numbers L e 1124
26.5 Bit manipulation 1132
26.6 Random number generation oL 1135
26.7 NUMETIC QITAYS . . .« « v v v v et et e e e e e e e e e e e e 1172
26.8 Mathematical functions for floating-point types L. 1191
26.9 Numbers e e 1206

27 Time library 1208
27.1 General 1208
27.2 Header <chrono> Synopsis« . o v v i i e e e e e 1208
27.3 Cppl17Clock requirements e 1222
27.4 Time-related traits L 1222
27.5 Class template duration L Lo 1224
27.6 Class template time_point 1231
27.7 Clocks o o e 1234
27.8 Thecivil calendar 1245
27.9 Class template hh_mm_ss i e e e e e 1273
27.10 12/24 hours functions 1275
27.11 Time ZONeS« v i e e e e e 1276
27.12 Formatting e e 1289
27.13 Parsing e 1292
27.14 Header <ctime> SYyNOPSIS . . « . v o v v v v i e 1295

28 Localization library 1297
28.1 General e 1297
28.2 Header <locale> SYNOPSIS . . . « « v v v vt v i e 1297
28.3 Locales 1298
28.4 Standard locale categories L. 1305
28.5 Clibrary locales 1335

29 Input/output library 1337
29.1 General 1337
29.2 Jostreams requirements oL Lo e e e e 1337
29.3 Forward declarations L 1338
29.4 Standard iostream objects L 1340
29.5 lostreams base classes L e 1341
29.6 Stream buffers. 1357
29.7 Formatting and manipulators Lo oo o 1365
29.8 String-based streams L. L 1389
29.9 File-based streams L e 1403
29.10 Synchronized output streams 1416
29.11 Filesystems oL 1421
29.12 Clibrary files o 1466

Contents vi

©ISO/IEC

30 Regular expressions library

30.1 General
30.2 Definitions
30.3 Requirements
30.4 Header <regex> Synopsis.
30.5 Namespace std::regex_constants.
30.6 Class regex_error
30.7 Class template regex_traits
30.8 Class template basic_regex
30.9 Class template sub_match
30.10 Class template match_results
30.11 Regular expression algorithms
30.12 Regular expression iterators L.

30.13 Modified ECMAScript regular expression grammar

31 Atomic operations library

31.1 General
31.2 Header <atomic> Synopsis
31.3 Typealiases L e
31.4 Order and consistency oL
31.5 Lock-free property
31.6 Waiting and notifying oL L
31.7 Class template atomic_ref
31.8 Class template atomic
31.9 Non-member functions oL
31.10 Flag type and operationso L
31.11 Fences e
32 Thread support library
32.1 General
32.2 Requirements L Lo
32.3 Stoptokens
324 Threads e
32.5 Mutual exclusion L
32.6 Condition variables oL
32.7 Semaphore
32.8 Coordination types
32.9 Futures

A Grammar summary

A1l Keywords
A2 Lexical conventions
A3 Basics
A4 EXpressions e
A5 Statements L
A6 Declarations
A7 Modules
A8 Classes v i e
A9 Overloading
A10 Templates
A.11 Exception handling,
A.12 Preprocessing directives 0oL

B Implementation quantities

C Compatibility

C.1l CHand ISO C s
C.2 CH++and ISO C+H 2003 e
C.3 CH+and ISO C++ 2011

Contents

N4835

vii

©ISO/IEC N4835

C4d CHtand ISO C++ 2014 L o e 1627
C.5 CHtand ISO C++ 2017 o o 1630
C.6 Cstandard library L 1637
D Compatibility features 1639
D.1 Arithmetic conversion on enumerations oL oL e 1639
D.2 Implicit capture of *this by reference 1639
D.3 Comma operator in subscript expressions 1639
D4 Array compariSOnso e e 1639
D.5 Deprecated volatile types o . Lo e 1640
D.6 Redeclaration of static constexpr data members 1640
D.7 Implicit declaration of copy functions oo L 1640
D.8 Cstandard library headers L 1640
D.9 Relational operators 1641
D.10 charkxstreams oL 1642
D.11 Deprecated type traits 1649
D.12 Deprecated iterator primitiveso e 1650
D.13 Deprecated move_iterator acCess it e i 1650
D.14 Deprecated shared_ptr atomic access L Lo o 1650
D.15 Deprecated basic_string capacityo Lo 1652
D.16 Deprecated standard code conversion facets oL 1652
D.17 Deprecated convenience conversion interfaces L. 1654
D.18 Deprecated locale category facets L oL 1657
D.19 Deprecated filesystem path factory functions oo oL 1657
Bibliography 1659
Cross references 1660
Cross references from ISO C++ 2017 1682
Index 1685
Index of grammar productions 1718
Index of library headers 1723
Index of library names 1725
Index of library concepts 1796
Index of implementation-defined behavior 1798
Contents viii

©ISO/IEC N4835

1 Scope lintro.scope]

This document specifies requirements for implementations of the C++ programming language. The first such
requirement is that they implement the language, so this document also defines C++. Other requirements
and relaxations of the first requirement appear at various places within this document.

C++ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:2011 Programming languages — C' (hereinafter referred to as the C standard). C++ provides
many facilities beyond those provided by C, including additional data types, classes, templates, exceptions,
namespaces, operator overloading, function name overloading, references, free store management operators,
and additional library facilities.

Scope 1

(1.10)

©ISO/IEC N4835

2 Normative references lintro.refs]

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

— Ecma International, ECMAScript Language Specification, Standard Ecma-262, third edition, 1999.

— INTERNET ENGINEERING TASK FORCE (IETF). RFC 6557: Procedures for Maintaining the Time
Zone Database [online]. Edited by E. Lear, P. Eggert. February 2012 [viewed 2018-03-26]. Available at
https://www.ietf.org/rfc/rfc6557.txt

— ISO/IEC 2382 (all parts), Information technology — Vocabulary

— ISO 8601:2004, Data elements and interchange formats — Information interchange — Representation
of dates and times

— ISO/IEC 9899:2011, Programming languages — C
— ISO/IEC 9945:2003, Information Technology — Portable Operating System Interface (POSIX)
— ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS)

— ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane

— ISO/IEC/IEEE 60559:2011, Information technology — Microprocessor Systems — Floating-Point
arithmetic

— ISO 80000-2:2009, Quantities and units — Part 2: Mathematical signs and symbols to be used in the
natural sciences and technology

The library described in Clause 7 of ISO/IEC 9899:2011 is hereinafter called the C standard library.!
The operating system interface described in ISO/TEC 9945:2003 is hereinafter called POSIX.
The ECMAScript Language Specification described in Standard Ecma-262 is hereinafter called ECMA-262.

[Note: References to ISO/TEC 10646-1:1993 are used only to support deprecated features (D.16). — end
note]

1) With the qualifications noted in Clause 17 through Clause 32 and in C.6, the C standard library is a subset of the C++
standard library.

Normative references 2

https://www.ietf.org/rfc/rfc6557.txt

(2.1)

(2.2)

©ISO/IEC N4835

3 Terms and definitions lintro.defs]

For the purposes of this document, the terms and definitions given in ISO/IEC 2382-1:1993, the terms,
definitions, and symbols given in ISO 80000-2:2009, and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at http://www.electropedia.org/

16.3 defines additional terms that are used only in Clause 16 through Clause 32 and Annex D.

Terms that are used only in a small portion of this document are defined where they are used and italicized
where they are defined.

3.1 [defns.access]
access
(execution-time action) read or modify the value of an object

3.2 [defns.argument]
argument
(function call expression) expression in the comma-separated list bounded by the parentheses (7.6.1.2)

3.3 [defns.argument.macro]
argument

(function-like macro) sequence of preprocessing tokens in the comma-separated list bounded by the parentheses
(15.6)

3.4 [defns.argument.throw]
argument
(throw expression) operand of throw (7.6.18)

3.5 [defns.argument.templ]
argument

(template instantiation) constant-expression, type-id, or id-expression in the comma-separated list bounded
by the angle brackets (13.4)

3.6 [defns.block]
block

wait for some condition (other than for the implementation to execute the execution steps of the thread of
execution) to be satisfied before continuing execution past the blocking operation

3.7 [defns.cond.supp]
conditionally-supported
program construct that an implementation is not required to support

[Note 1 to entry: Each implementation documents all conditionally-supported constructs that it does not
support. — end note]

3.8 [defns.diagnostic]
diagnostic message
message belonging to an implementation-defined subset of the implementation’s output messages

3.9 [defns.dynamic.type]
dynamic type
(glvalue) type of the most derived object (6.7.2) to which the glvalue refers

[Ezample: If a pointer (9.3.3.1) p whose static type is “pointer to class B” is pointing to an object of class D,
derived from B (11.7), the dynamic type of the expression *p is “D”. References (9.3.3.2) are treated similarly.
— end example]

§3.9 3

https://www.iso.org/obp
http://www.electropedia.org/

©ISO/IEC N4835

3.10 [defns.dynamic.type.prvalue]
dynamic type
(prvalue) static type of the prvalue expression

3.11 [defns.ill.formed]
ill-formed program
program that is not well-formed (3.29)

3.12 [defns.impl.defined]
implementation-defined behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation and
that each implementation documents

3.13 [defns.impl.limits]
implementation limits
restrictions imposed upon programs by the implementation

3.14 [defns.locale.specific]
locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implementation
documents

3.15 [defns.multibyte]
multibyte character

sequence of one or more bytes representing a member of the extended character set of either the source or
the execution environment

[Note 1 to entry: The extended character set is a superset of the basic character set (5.3). — end note]
3.16 [defns.parameter]
parameter

(function or catch clause) object or reference declared as part of a function declaration or definition or in the
catch clause of an exception handler that acquires a value on entry to the function or handler

3.17 [defns.parameter.macro]
parameter

(function-like macro) identifier from the comma-separated list bounded by the parentheses immediately
following the macro name

3.18 [defns.parameter.templ]
parameter
(template) member of a template-parameter-list

3.19 [defns.signature]
signature
(function) name, parameter-type-list (9.3.3.5), enclosing namespace (if any), and trailing requires-clause (9.3)

(if any)

[Note 1 to entry: Signatures are used as a basis for name mangling and linking. — end note]
3.20 [defns.signature.templ]
signature

(function template) name, parameter-type-list (9.3.3.5), enclosing namespace (if any), return type, template-
head, and trailing requires-clause (9.3) (if any)

3.21 [defns.signature.spec]
signature

(function template specialization) signature of the template of which it is a specialization and its template
arguments (whether explicitly specified or deduced)

§3.21 4

©ISO/IEC N4835

3.22 [defns.signature.member]
signature

(class member function) name, parameter-type-list (9.3.3.5), class of which the function is a member,
cv-qualifiers (if any), ref-qualifier (if any), and trailing requires-clause (9.3) (if any)

3.23 [defns.signature.member.templ]
signature

(class member function template) name, parameter-type-list (9.3.3.5), class of which the function is a member,
cv-qualifiers (if any), ref-qualifier (if any), return type (if any), template-head, and trailing requires-clause (9.3)
(if any)

3.24 [defns.signature.member.spec]
signature

(class member function template specialization) signature of the member function template of which it is a
specialization and its template arguments (whether explicitly specified or deduced)

3.25 [defns.static.type]
static type
type of an expression (6.8) resulting from analysis of the program without considering execution semantics

[Note 1 to entry: The static type of an expression depends only on the form of the program in which the
expression appears, and does not change while the program is executing. — end note|

3.26 [defns.unblock]
unblock
satisfy a condition that one or more blocked threads of execution are waiting for

3.27 [defns.undefined]
undefined behavior
behavior for which this document imposes no requirements

[Note 1 to entry: Undefined behavior may be expected when this document omits any explicit definition of
behavior or when a program uses an erroneous construct or erroneous data. Permissible undefined behavior
ranges from ignoring the situation completely with unpredictable results, to behaving during translation or
program execution in a documented manner characteristic of the environment (with or without the issuance
of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic message).
Many erroneous program constructs do not engender undefined behavior; they are required to be diagnosed.
Evaluation of a constant expression never exhibits behavior explicitly specified as undefined in Clause 4
through Clause 15 of this document (7.7). — end note]

3.28 [defns.unspecified]
unspecified behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation

[Note 1 to entry: The implementation is not required to document which behavior occurs. The range of
possible behaviors is usually delineated by this document. — end note|

3.29 [defns.well.formed]
well-formed program

C++ program constructed according to the syntax rules, diagnosable semantic rules, and the one-definition
rule (6.3)

§ 3.29 5

(2.1)

(2.2)

(2.3)

t

©ISO/IEC N4835

4 General principles lintro]

4.1 Implementation compliance [intro.compliance]

The set of diagnosable rules consists of all syntactic and semantic rules in this document except for those
rules containing an explicit notation that “no diagnostic is required” or which are described as resulting in
“undefined behavior”.

Although this document states only requirements on C++ implementations, those requirements are often
easier to understand if they are phrased as requirements on programs, parts of programs, or execution of
programs. Such requirements have the following meaning:

— If a program contains no violations of the rules in this document, a conforming implementation shall,
within its resource limits, accept and correctly execute® that program.

— If a program contains a violation of any diagnosable rule or an occurrence of a construct described in
this document as “conditionally-supported” when the implementation does not support that construct,
a conforming implementation shall issue at least one diagnostic message.

— If a program contains a violation of a rule for which no diagnostic is required, this document places no
requirement on implementations with respect to that program.

[Note: During template argument deduction and substitution, certain constructs that in other contexts
require a diagnostic are treated differently; see 13.10.2. — end note]

For classes and class templates, the library Clauses specify partial definitions. Private members (11.9) are not
specified, but each implementation shall supply them to complete the definitions according to the description
in the library Clauses.

For functions, function templates, objects, and values, the library Clauses specify declarations. Implementa-
tions shall supply definitions consistent with the descriptions in the library Clauses.

The names defined in the library have namespace scope (9.8). A C++ translation unit (5.2) obtains access to
these names by including the appropriate standard library header (15.3).

The templates, classes, functions, and objects in the library have external linkage (6.6). The implementation
provides definitions for standard library entities, as necessary, while combining translation units to form a
complete C++ program (5.2).

Two kinds of implementations are defined: a hosted implementation and a freestanding implementation. For a
hosted implementation, this document defines the set of available libraries. A freestanding implementation is
one in which execution may take place without the benefit of an operating system, and has an implementation-
defined set of libraries that includes certain language-support libraries (16.5.1.3).

A conforming implementation may have extensions (including additional library functions), provided they
do not alter the behavior of any well-formed program. Implementations are required to diagnose programs
that use such extensions that are ill-formed according to this document. Having done so, however, they can
compile and execute such programs.

Each implementation shall include documentation that identifies all conditionally-supported constructs that
it does not support and defines all locale-specific characteristics.?

4.1.1 Abstract machine [intro.abstract]

The semantic descriptions in this document define a parameterized nondeterministic abstract machine. This
document places no requirement on the structure of conforming implementations. In particular, they need
not copy or emulate the structure of the abstract machine. Rather, conforming implementations are required
to emulate (only) the observable behavior of the abstract machine as explained below.*

2) “Correct execution” can include undefined behavior, depending on the data being processed; see Clause 3 and 6.9.1.

3) This documentation also defines implementation-defined behavior; see 4.1.1.

4) This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this
document as long as the result is as if the requirement had been obeyed, as far as can be determined from the observable
behavior of the program. For instance, an actual implementation need not evaluate part of an expression if it can deduce that
its value is not used and that no side effects affecting the observable behavior of the program are produced.

§4.1.1 6

©ISO/IEC N4835

Certain aspects and operations of the abstract machine are described in this document as implementation-
defined (for example, sizeof (int)). These constitute the parameters of the abstract machine. Each
implementation shall include documentation describing its characteristics and behavior in these respects.’
Such documentation shall define the instance of the abstract machine that corresponds to that implementation
(referred to as the “corresponding instance” below).

Certain other aspects and operations of the abstract machine are described in this document as unspecified
(for example, order of evaluation of arguments in a function call (7.6.1.2)). Where possible, this document
defines a set of allowable behaviors. These define the nondeterministic aspects of the abstract machine. An
instance of the abstract machine can thus have more than one possible execution for a given program and a
given input.

Certain other operations are described in this document as undefined (for example, the effect of attempting

to modify a const object). [Note: This document imposes no requirements on the behavior of programs that
contain undefined behavior. — end note]

A conforming implementation executing a well-formed program shall produce the same observable behavior as
one of the possible executions of the corresponding instance of the abstract machine with the same program
and the same input. However, if any such execution contains an undefined operation, this document places
no requirement on the implementation executing that program with that input (not even with regard to
operations preceding the first undefined operation).

The least requirements on a conforming implementation are:
— Accesses through volatile glvalues are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
output is actually delivered before a program waits for input. What constitutes an interactive device is
implementation-defined.

These collectively are referred to as the observable behavior of the program. [Note: More stringent cor-

respondences between abstract and actual semantics may be defined by each implementation. — end
note]
4.2 Structure of this document [intro.structure]

Clause 5 through Clause 15 describe the C++ programming language. That description includes detailed
syntactic specifications in a form described in 4.3. For convenience, Annex A repeats all such syntactic
specifications.

Clause 17 through Clause 32 and Annex D (the library clauses) describe the C++ standard library. That
description includes detailed descriptions of the entities and macros that constitute the library, in a form
described in Clause 16.

Annex B recommends lower bounds on the capacity of conforming implementations.

Annex C summarizes the evolution of C++ since its first published description, and explains in detail the
differences between C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D
describes those features.

Throughout this document, each example is introduced by “[Ezample: ” and terminated by “ — end exzample]”.
Each note is introduced by “[Note: ” and terminated by ¢ — end note]”. Examples and notes may be nested.
4.3 Syntax notation [syntax]

In the syntax notation used in this document, syntactic categories are indicated by italic type, and literal
words and characters in constant width type. Alternatives are listed on separate lines except in a few cases
where a long set of alternatives is marked by the phrase “one of”. If the text of an alternative is too long to
fit on a line, the text is continued on subsequent lines indented from the first one. An optional terminal or
non-terminal symbol is indicated by the subscript “,,;”, so

{ expressionp; }

indicates an optional expression enclosed in braces.

5) This documentation also includes conditionally-supported constructs and locale-specific behavior. See 4.1.

§4.3 7

©ISO/IEC N4835

Names for syntactic categories have generally been chosen according to the following rules:
— X-name is a use of an identifier in a context that determines its meaning (e.g., class-name, typedef-name).
— X-id is an identifier with no context-dependent meaning (e.g., qualified-id).

— X-seq is one or more X's without intervening delimiters (e.g., declaration-seq is a sequence of declara-
tions).

— X-list is one or more X’s separated by intervening commas (e.g., identifier-list is a sequence of identifiers
separated by commas).
4.4 Acknowledgments [intro.ack]

The C++ programming language as described in this document is based on the language as described in
Chapter R (Reference Manual) of Stroustrup: The C++ Programming Language (second edition, Addison-
Wesley Publishing Company, ISBN 0-201-53992-6, copyright ©1991 AT&T). That, in turn, is based on the C
programming language as described in Appendix A of Kernighan and Ritchie: The C' Programming Language
(Prentice-Hall, 1978, ISBN 0-13-110163-3, copyright ©1978 AT&T).

Portions of the library Clauses of this document are based on work by P.J. Plauger, which was published as
The Draft Standard C++ Library (Prentice-Hall, ISBN 0-13-117003-1, copyright ©1995 P.J. Plauger).

POSIX® is a registered trademark of the Institute of Electrical and Electronic Engineers, Inc.
ECMAScript® is a registered trademark of Ecma International.

All rights in these originals are reserved.

§4.4 8

©ISO/IEC N4835

5 Lexical conventions [lex]

5.1 Separate translation [lex.separate]

1 The text of the program is kept in units called source files in this document. A source file together with
all the headers (16.5.1.2) and source files included (15.3) via the preprocessing directive #include, less any
source lines skipped by any of the conditional inclusion (15.2) preprocessing directives, is called a translation
unit. [Note: A C++ program need not all be translated at the same time. — end note]

2 [Note: Previously translated translation units and instantiation units can be preserved individually or in
libraries. The separate translation units of a program communicate (6.6) by (for example) calls to functions
whose identifiers have external or module linkage, manipulation of objects whose identifiers have external or
module linkage, or manipulation of data files. Translation units can be separately translated and then later
linked to produce an executable program (6.6). — end note]

5.2 Phases of translation [lex.phases]

1 The precedence among the syntax rules of translation is specified by the following phases.’

1. Physical source file characters are mapped, in an implementation-defined manner, to the basic source
character set (introducing new-line characters for end-of-line indicators) if necessary. The set of physical
source file characters accepted is implementation-defined. Any source file character not in the basic
source character set (5.3) is replaced by the universal-character-name that designates that character.
An implementation may use any internal encoding, so long as an actual extended character encountered
in the source file, and the same extended character expressed in the source file as a universal-character-
name (e.g., using the \uXXXX notation), are handled equivalently except where this replacement is
reverted (5.4) in a raw string literal.

2. Each instance of a backslash character (\) immediately followed by a new-line character is deleted,
splicing physical source lines to form logical source lines. Only the last backslash on any physical source
line shall be eligible for being part of such a splice. Except for splices reverted in a raw string literal,
if a splice results in a character sequence that matches the syntax of a universal-character-name, the
behavior is undefined. A source file that is not empty and that does not end in a new-line character,
or that ends in a new-line character immediately preceded by a backslash character before any such
splicing takes place, shall be processed as if an additional new-line character were appended to the file.

3. The source file is decomposed into preprocessing tokens (5.4) and sequences of white-space characters
(including comments). A source file shall not end in a partial preprocessing token or in a partial
comment.” Each comment is replaced by one space character. New-line characters are retained.
Whether each nonempty sequence of white-space characters other than new-line is retained or replaced
by one space character is unspecified. The process of dividing a source file’s characters into preprocessing
tokens is context-dependent. [Ezample: See the handling of < within a #include preprocessing directive.
— end example]

4. Preprocessing directives are executed, macro invocations are expanded, and _Pragma unary operator
expressions are executed. If a character sequence that matches the syntax of a universal-character-name
is produced by token concatenation (15.6.3), the behavior is undefined. A #include preprocessing
directive causes the named header or source file to be processed from phase 1 through phase 4, recursively.
All preprocessing directives are then deleted.

5. Each basic source character set member in a character literal or a string literal, as well as each escape
sequence and universal-character-name in a character literal or a non-raw string literal, is converted to
the corresponding member of the execution character set (5.13.3, 5.13.5); if there is no corresponding
member, it is converted to an implementation-defined member other than the null (wide) character.®

6) Implementations must behave as if these separate phases occur, although in practice different phases might be folded
together.

7) A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that
requires a terminating sequence of characters, such as a header-name that is missing the closing " or >. A partial comment
would arise from a source file ending with an unclosed /* comment.

8) An implementation need not convert all non-corresponding source characters to the same execution character.

§5.2 9

©ISO/IEC N4835

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each preprocessing token is converted
into a token (5.6). The resulting tokens are syntactically and semantically analyzed and translated as a
translation unit. [Note: The process of analyzing and translating the tokens may occasionally result in
one token being replaced by a sequence of other tokens (13.3). — end note] It is implementation-defined
whether the sources for module units and header units on which the current translation unit has an
interface dependency (10.1, 10.3) are required to be available. [Note: Source files, translation units and
translated translation units need not necessarily be stored as files, nor need there be any one-to-one
correspondence between these entities and any external representation. The description is conceptual
only, and does not specify any particular implementation. — end note]

8. Translated translation units and instantiation units are combined as follows: [Note: Some or all of
these may be supplied from a library. — end note] Each translated translation unit is examined
to produce a list of required instantiations. [Note: This may include instantiations which have been
explicitly requested (13.9.2). — end note] The definitions of the required templates are located. It
is implementation-defined whether the source of the translation units containing these definitions
is required to be available. [Note: An implementation could encode sufficient information into the
translated translation unit so as to ensure the source is not required here. — end note] All the required
instantiations are performed to produce instantiation units. [Note: These are similar to translated
translation units, but contain no references to uninstantiated templates and no template definitions.
— end note] The program is ill-formed if any instantiation fails.

9. All external entity references are resolved. Library components are linked to satisfy external references
to entities not defined in the current translation. All such translator output is collected into a program
image which contains information needed for execution in its execution environment.

5.3 Character sets [lex.charset)]

The basic source character set consists of 96 characters: the space character, the control characters representing
horizontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical characters:’

abcdefghijklmnopgqrstuvwxyaz
ABCDEFGHIJKLMNOPQRSTUVWIXYZ
0123456789

SAYITI#) <>y 2 x+ =/ &~ =, "D

The universal-character-name construct provides a way to name other characters.

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:
\u hez-quad
\U hex-quad hez-quad

The character designated by the universal-character-name \UOONNNNNN is that character that has U+NNNNNN
as a code point short identifier; the character designated by the universal-character-name \ulNNN is that
character that has U+NNNN as a code point short identifier. If a universal-character-name does not correspond
to a code point in ISO/TEC 10646 or if a universal-character-name corresponds to a surrogate code point, the
program is ill-formed. Additionally, if a universal-character-name outside the c-char-sequence, s-char-sequence,
or r-char-sequence of a character or string literal corresponds to a control character or to a character in the
basic source character set, the program is ill-formed.!? [Note: ISO/TEC 10646 code points are within the
range 0x0-0x10FFFF (inclusive). A surrogate code point is a value in the range 0xD800-0xDFFF (inclusive).
A control character is a character whose code point is in either of the ranges 0x0-0x1F or 0x7F-0x9F (both
inclusive). — end note]

The basic execution character set and the basic execution wide-character set shall each contain all the
members of the basic source character set, plus control characters representing alert, backspace, and carriage
return, plus a null character (respectively, null wide character), whose value is 0. For each basic execution

9) The glyphs for the members of the basic source character set are intended to identify characters from the subset of ISO/IEC
10646 which corresponds to the ASCII character set. However, because the mapping from source file characters to the source
character set (described in translation phase 1) is specified as implementation-defined, an implementation is required to document
how the basic source characters are represented in source files.

10) A sequence of characters resembling a universal-character-name in an r-char-sequence (5.13.5) does not form a universal-
character-name.

§5.3 10

(3.1)

(3.2)

(3.3)

(3.3.1)

(3.3.2)

©ISO/IEC N4835

character set, the values of the members shall be non-negative and distinct from one another. In both the
source and execution basic character sets, the value of each character after 0 in the above list of decimal
digits shall be one greater than the value of the previous. The execution character set and the execution
wide-character set are implementation-defined supersets of the basic execution character set and the basic
execution wide-character set, respectively. The values of the members of the execution character sets and the
sets of additional members are locale-specific.

5.4 Preprocessing tokens [lex.pptoken)]
preprocessing-token:

header-name

import-keyword

identifier

pp-number

character-literal

user-defined-character-literal

string-literal

user-defined-string-literal

Preprocessing-op-or-punc

each non-white-space character that cannot be one of the above
Each preprocessing token that is converted to a token (5.6) shall have the lexical form of a keyword, an
identifier, a literal, an operator, or a punctuator.

A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6. The
categories of preprocessing token are: header names, import keywords, identifiers, preprocessing numbers,
character literals (including user-defined character literals), string literals (including user-defined string
literals), preprocessing operators and punctuators, and single non-white-space characters that do not lexically
match the other preprocessing token categories. If a > or a " character matches the last category, the behavior
is undefined. Preprocessing tokens can be separated by white space; this consists of comments (5.7), or
white-space characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both. As described in
Clause 15, in certain circumstances during translation phase 4, white space (or the absence thereof) serves as
more than preprocessing token separation. White space can appear within a preprocessing token only as part
of a header name or between the quotation characters in a character literal or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character:

— If the next character begins a sequence of characters that could be the prefix and initial double quote
of a raw string literal, such as R", the next preprocessing token shall be a raw string literal. Between
the initial and final double quote characters of the raw string, any transformations performed in phases
1 and 2 (universal-character-names and line splicing) are reverted; this reversion shall apply before any
d-char, r-char, or delimiting parenthesis is identified. The raw string literal is defined as the shortest
sequence of characters that matches the raw-string pattern

encoding-prefitops R raw-string

— Otherwise, if the next three characters are <:: and the subsequent character is neither : nor >,