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Abstract 
The jthread paper (​P0660R4​) which seeks to introduce a joinable thread, ​std::jthread ​, also 
proposes to add a new type ​std::interrupt_token ​ that can be used to interrupt blocking 
wait operations on a ​std::condition_variable ​. 
 
The motivation for adding ​std::interrupt_token ​ in the jthread paper seems to be primarily 
as a mechanism to allow interrupting a thread’s blocking operations so that we can safely join 
the thread in the jthread destructor. The destructor signals the ​interrupt_token ​ and then 
calls ​.join() ​ on the thread. 
 
However, there is also a need to be able to interrupt operations other than 
std::condition_variable::wait() ​. With the pending introduction of coroutines, 
executors and async networking and I/O into the C++ standard there will be a growing number 
of asynchronous operations that will also need to support being interrupted. 
 
The current interface of ​interrupt_token ​ as proposed provides only the ability to poll for 
interruption. While this approach can work well for synchronous or parallel computations that 
are actively executing and that can periodically check for interruption, the polling model does not 
work well for asynchronous operations that may be suspended, waiting for some operation to 
complete or some event to occur. Such operations typically need to execute some logic to 
actively interrupt the operation. 
 
In order to support the use-case of interrupting asynchronous operations there needs to be 
some way for that operation to subscribe for notification that an ​interrupt_token ​ has been 
interrupted. 
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This paper proposes adding the ability to attach multiple, independent callbacks to an 
interrupt_token ​ for the lifetime of an RAII object of type 
interrupt_callback<Callback> ​. 
 
This paper also seeks to raise concerns about the design of ​interrupt_token ​ acting both as 
a source of interruption signals and interface for responding to interruption signals. An 
alternative design is proposed that separates the concerns of signalling interruption from 
responding to interruption. 

Callbacks 
For ​interrupt_token ​ to be usable for interrupting asynchronous operations there needs to 
be some way for those operations to be actively interrupted when interruption is requested. 
 
For example, to interrupt an asynchronous I/O request on Windows you need to call 
CancelIoEx() ​ to request that the OS cancel the operation. 
 
In another example, if a coroutine was asynchronously waiting for a timer to elapse and we 
wanted to interrupt this operation then we would need to actively perform some action to cancel 
this timer and promptly resume the coroutine. If the only facility we have in ​interrupt_token 
is the ability to poll for cancellation then this would mean the timer would need to periodically 
wake up and check to see if it has been cancelled, increasing both the runtime cost and 
introducing latency in responding to interruption. 
 
The proposed solution to this is to add the ability to register callbacks that are associated with 
the ​interrupt_token ​ such that the first thread to call ​interrupt_token::interrupt() 
then executes all callbacks that were registered at the time inside the call to ​interrupt() ​. 
 
The executed callbacks are then able to perform some action to actively interrupt whatever 
operation is currently being waited on. 

Proposed API 
The proposed change to the API of ​interrupt_token ​ is the introduction of a new 
interrupt_callback<Callback> ​ type that acts as a RAII object that is responsible for 
registering the callback with the ​interrupt_token ​ on construction and deregistering the 
callback on destruction. 

Synopsis: 
// <interrupt_token> 

 



#include ​ ​<concepts> 
 

namespace ​ std 
{ 

  ​class ​ interrupt_token; 
 

  ​// Exposition only 
  ​class ​ __interrupt_callback_base 
  { 

  ​public ​: 
    ​// Type erased call to callback. 
    ​virtual ​ ​void ​ __call() ​noexcept ​ = 0; 
  }; 

 

  ​template ​<Invocable Callback> 
  ​class ​ interrupt_callback : ​private ​ __interrupt_callback_base 
  { 

  ​public ​: 
    ​// Construction registers the callback with the interrupt_token  
    interrupt_callback( 

      interrupt_token&& it, Callback&& callback); 

    interrupt_callback( 

      ​const ​ interrupt_token& it, Callback&& callback); 
 

    // Deregisters the callback from the interrupt_token. 

    ~interrupt_callback(); 

 

    ​// Interrupt callbacks are not copyable or movable 
    interrupt_callback(interrupt_callback&&) = ​delete ​; 
    interrupt_callback( ​const ​ interrupt_callback&) = ​delete ​; 
    interrupt_callback& ​operator= ​(interrupt_callback&&) = ​delete ​; 
    interrupt_callback& ​operator= ​( 
      ​const ​ interrupt_callback&&) = ​delete ​; 
 

  ​private ​: 
 

    ​// Exposition only 
    ​virtual ​ ​void ​ __call() ​noexcept ​ ​override 
    { 

      callback_(); 

    } 

 

    ​// Exposition only 



    interrupt_token it_; 

    Callback callback_; 

  }; 

 

  ​template ​< ​typename ​ Callback> 
  interrupt_callback(interrupt_token&&, Callback&&) 

    -> interrupt_callback<Callback>; 

 

  ​template ​< ​typename ​ Callback> 
  interrupt_callback( ​const ​ interrupt_token&, Callback&&) 
    -> interrupt_callback<Callback>; 

} 

Example usage: 
Example: Cancelling a timer 
#include ​<interrupt_token> 
 

task< ​void ​> async_sleep( 
  std::chrono::milliseconds duration, 

  std::interrupt_token it) 

{ 

  ​auto ​ timer = timer::create(duration); 
 

  // Register a callback to be run if interruption is requested. 

  ​// Callback template parameter is deduced due to deduction 
guides. 

  std::interrupt_callback cb{ it, [&timer] { timer.cancel(); } }; 

 

  // Asynchronously wait for time to elapse. 

  // This will resume early if timer.cancel() is called. 

  ​co_await ​ timer; 
 

  ​// Callback automatically deregistered at end of scope. 
} 

Semantics: 
bool std::interrupt_token::interrupt() noexcept; 

Effects:​ If ​!valid() || is_interrupted() ​ the call has no effect. Otherwise, signals an 
interrupt so that ​is_interrupted() == true ​ and then executes the callbacks of all 
interrupt_callback ​ objects currently associated with the same ​interrupt_token ​ state 
(​interrupt_token ​ objects copied or moved from the same initial ​interrupt_token 
object). 



Ensures:​ ​!valid() || is_interrupted() 
Returns: ​The value of ​is_interrupted() ​ prior to the call. 
 

template<typename Callback> 

std::interrupt_callback<Callback>::interrupt_callback( 

  interrupt_token&& it, 

  Callback&& callback); 

template<typename Callback> 

std::interrupt_callback<Callback>::interrupt_callback( 

  const interrupt_token& it, 

  Callback&& callback); 

Effects:​ Copies ‘​callback ​’ into the ​interrupt_callback ​ object. If 
it.is_interrupted() ​ is true on entry to the constructor then invokes the callback in the 
current thread before the constructor returns. Otherwise, associates this callback with the 
interrupt_token ​ so that if some thread subsequently calls ​it.interrupt() ​ then this 
callback object will be invoked. 
Synchronisation:​ Guarantees that, if there is a concurrent call to ​it.interrupt() ​ on another 
thread that either the other thread will ‘synchronise with’ the callback registration and will 
execute the callback before the call to ​it.interrupt() ​ returns, or this thread will 
‘synchronise with’ the call to ​it.interrupt() ​ and will execute the callback inline before the 
constructor returns. 
Exceptions:​ Throws any exception thrown by Callback’s move-constructor or 
std::bad_alloc ​ if memory could not be allocated for the callback registration. The callback 
will not be invoked or have been invoked if the call to the constructor exits with an exception. 
 
template<typename Callback> 

std::interrupt_callback<Callback>::~interrupt_callback(); 

Effects:​ Deregisters the callback from the associated ​interrupt_token ​. A subsequent call to 
.interrupt() ​ on the ​interrupt_token ​ will not execute this callback. 
Synchronisation:​ If another thread has made a concurrent call to 
interrupt_token::interrupt() ​ then either the callback will be deregistered prior to the 
other thread executing the callback and the callback will not run, or the other thread will execute 
the callback and the destructor will not return until after the callback has finished executing. 
Exceptions:​ None. If the ​Callback ​ destructor throws an exception then ​std::terminate() 
is called. 

Design Discussion 

Why do we need to support multiple callbacks? 
There were some suggestions at the ad-hoc Executors meeting in Bellevue that we may be able 
to get away with an implementation that supports only a single callback if we can have the 



callbacks chain execution on to each other. eg. if the most recently registered callback executes 
the previously registered callback, and so on until the end of the chain is reached. 
 
This design would be sufficient if callbacks were registered and never deregistered or if 
callbacks were only ever registered with strictly nested lifetimes. However, as we will often want 
to temporarily register an interrupt callback only for the duration of an operation this rules out 
the first case. And since an ​interrupt_token ​ is able to be copied, it can potentially be 
passed to multiple functions or coroutines that execute concurrently and thus the lifetimes of the 
callback registrations may not be strictly nested. 
 
Note that use-cases of ​interrupt_token ​ with coroutines could conceivably need to handle 
many thousands to millions of concurrent interruptible operations registering callbacks with an 
interrupt token at any one point in time. 

Where do the callbacks run? 
There are several options for where the callbacks should execute. It could be in some 
runtime-defined thread (eg. using ​std::async() ​), or we could require that the callback 
registration provide an executor that will execute the callback, or it could be on the thread that 
calls ​.interrupt() ​. 
 
The simplest solution, and the solution proposed by this paper, is to execute the callbacks inline 
within the first call to ​.interrupt() ​ on the ​interrupt_token ​. 
 
If there multiple calls to ​.interrupt() ​ then only the first call will execute the callback. 
Subsequent calls to ​.interrupt() ​ will be a no-op and will return immediately. 

Avoiding heap allocations for callbacks 
When a client of the ​interrupt_token ​ wants to register a callback, the invocable 
object/function-pointer for the callback needs to be stored somewhere and type-erased so that 
the ​interrupt_token::interrupt() ​ implementation can call it. 
 
By having the ​interrupt_callback ​ object be templated on the callback-type it can then 
store the callback object inline inside the ​interrupt_callback ​ object along with any other 
implementation-specific state required to be able to register the callback with the 
interrupt_token ​. This can avoid the need to store the callback on the heap (eg. as it might 
if using ​std::function<void()> ​ to store the callback). 
 
One possible implementation that would not require any additional heap-allocations to register a 
callback would be to store two additional pointers in the ​interrupt_callback ​ object and 
have the constructor insert itself into an intrusive doubly-linked list in the ​interrupt_token 
state (using appropriate synchronisation). 
 



Another possible implementation is the one used by the cppcoro  library’s 1

cancellation_token ​ type. This implementation allocates a pool of pointers to callback 
objects internally in the ​interrupt_token ​ state and then uses a lock-free algorithm to 
atomically register the callback object with a slot in this pool. This allows lock-free registration 
and (mostly) lock-free deregistration of callbacks. Deregistering a callback will block only when 
there is a concurrent call to .interrupt() on another thread. 
 
Memory used by this pool of pointers is not reclaimed until the last ​interrupt_token 
referencing the shared-state is destroyed, however, this memory is reused by subsequent 
callback registrations. 
 
Other implementation strategies that make use of deferred reclaimation  techniques may be 2

possible here. This is an area for future research. 

Overhead of supporting callbacks 
The overhead of supporting callbacks in the ​interrupt_token ​ interface in the case where 
callbacks are never registered can be made negligible for polling-only use-cases. 
 
For example, the shared state in the cppcoro implementation looks like this: 
struct ​cancellation_state 
{ 

  // Bit 0 - cancellation requested 

  // Bit 1 - cancellation notification complete 

  // Bits 2-32 - Ref count for cancellation_source objects 

  // Bits 33-63 - Ref count for cancellation_token objects 

  std::atomic<std::uint64_t> m_state; 

  std::atomic<cancellation_registration_state*> 

m_registrationState; 

}; 
 
The allocation of the data-structure used to store callbacks is deferred until the first callback is 
registered. If you never register a callback against the ​interrupt_token ​ then the storage 
overhead is simply that of a single pointer. 
 
This means that for polling-only use-cases of ​interrupt_token ​ the implementation can be 
made as space efficient as a ​std::shared_ptr<std::atomic<bool>> ​. 

1 ​https://github.com/lewissbaker/cppcoro 
2 See Hazard Pointers and RCU facilities proposed in P0566 and P1122. 
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What happens if callbacks throw an exception? 
If a callback that was registered with the ​interrupt_token ​ were to throw an exception when 
called then we need to decide what happens with that exception. 
 
If the exception were to propagate out of the call to ​interrupt_token::interrupt() ​ that 
was executing the callback then this could have the potential to introduce the exception into a 
context that is remote from and knows nothing about how to handle the exception. 
 
Further, this raises the question of what the ​interrupt() ​ implementation should do if there 
were multiple callbacks to execute and the first callback threw an exception. Ideally it should 
continue notifying the other registered callbacks as otherwise their operations would not be 
interrupted. But then what if those other callbacks also throw an exception? Should the 
exceptions be aggregated and rethrown once all callbacks had been executed? 
 
The simplest solution here seems to be to require that the callback not throw an exception. If the 
implementation of a callback that is attempting to interrupt some operation that can potentially 
fail then it seems logical to have that callback handle that error and either do it’s best to interrupt 
the operation or call ​std::terminate() ​ if such failure was fatal or unrecoverable. 
 
The proposed semantics, then, is to require that the callback be invoked in a noexcept context 
so that if the callback did throw an exception then this would result in ​std::terminate() 
being called. 

Risks of introducing callbacks 
One of the risks of adding support for callbacks to the design of ​interrupt_token ​ is that it 
means that code that registers a callback can potentially introduce execution of arbitrary code 
into the execution context of another thread which calls ​.interrupt() ​ on the token. 
 
Without care, it can be easy for this to potentially introduce deadlocks if the implementation of 
those callbacks are not lock-free. For example, if a callback tries to acquire a mutex lock but the 
calling thread already holds the mutex lock while calling ​.interrupt() ​ then this will lead to a 
deadlock. The example implementation of an interruptible condition_variable::wait_for(). 
 
For code where this is a potential problem, the calling code may need to execute the callbacks 
on a separate context. This can be done by scheduling the invocation of the callbacks to a 
different execution context. eg. using an executor. 
 
There are two approaches to this: 

● The caller can schedule the call to ​.interrupt() ​ onto an executor. 
eg. ​executor.defer([token] { token.interrupt(); }); 
This will schedule once and then execute each of the callbacks in-turn on the executor. 



● The individual callbacks that are not lock-free can schedule execution onto another 
execution context in the event they would need to block inside the callback. eg. 
interrupt_callback cb{ token, [executor, &] { 

  executor.defer([&] { ​/* interruption logic here */ ​ }); 
}}; 

 
Both approaches are possible with the proposed design. However, without higher-level 
knowledge of the context in which ​.interrupt() ​ will be called, callback implementations will 
generally need to act defensively and use the second approach to ensure they are lock free. 

Interruptible ​condition_variable::wait_for() ​ using callbacks 
The jthread paper  proposes to add overloads of ​condition_variable ​ wait operations that 3

can be interrupted via an ​interrupt_token ​. 
 
There are two main strategies to implementing an interruptible 
condition_variable::wait() ​. The first is to have the wait operation periodically wake up 
and check the state of the ​interrupt_token ​ to see if it has been interrupted. The second is 
to register a list of ​condition_variable ​ operations to be interrupted with the 
interrupt_token ​ so that the call to ​.interrupt() ​ can actively interrupt them. 
 
An implementation that wanted to use the second approach would need to create a mechanism 
internally that was effectively equivalent to registering callbacks. The implementation could 
potentially be optimised as it could assume that the callbacks are only ever interrupting 
condition_variable ​ wait operations, but it would still need to store a collection of 
operations to interrupt. 
 
Instead, if we were to make this callback facility a part of the public ​interrupt_token ​ API 
then we could build the interruptible ​condition_variable::wait_for() ​ operation on top 
of this callback facility and the existing standard library public interface. 
 
This would also make it possible to later extend the ability to interrupt other kinds of operations 
in the standard library (eg. ​std::semaphore::acquire(), std::mutex::lock() ​) 
without needing to modify the implementation of ​interrupt_token ​ and worry about ABI 
compatibility/breakage. 
 
Below is a potential implementation of an interruptible ​condition_variable::wait_for() 
operation that uses ​interrupt_callback ​ and the public ​condition_variable ​ APIs. 
Note that particular standard library implementations may be able to provide a more efficient 
implementation by taking advantage of internal implementation details. 
 

3 P0660R4 jthread paper presented at Bellevue 2018 



A correct implementation is subtle and difficult to get right due to the potential for either 
introducing deadlock or missed wake-ups. For this reason, it is important that the standard 
library provide interruptible implementations of these methods rather than relying on users to 
implement them correctly using ​interrupt_callback ​ themselves. 
 
Example: A potential implementation of interruptible ​condition_variable::wait_for() 
using ​interrupt_callback. 
template ​< ​typename ​ _Pred> 
bool ​ std::condition_variable::wait_for( 
  std::unique_lock<std::mutex>& __lock, 

  std::interrupt_token __it, 

  _Pred __pred) 

{ 

  // Don’t incur overhead of interrupt_callback if we can never be 

  // interrupted.  

  if (!__it.valid()) 

  { 

    ​return this ​->wait(__lock, std::move(__pred)); 
  } 

 

  ​if ​ (__it.is_interrupted()) ​return false ​;  

  ​if ​ (__pred()) ​return true ​; 
 

  ​enum class ​ _State { 
__waiting, 

__running, 

__interrupting, 

__interrupted 

  }; 

 

  std::atomic<_State> __state{ _State::__running }; 

  std::mutex& __mutex = *__lock.mutex(); 

  

  std::future< ​void ​> __asyncNotification; 
 

  std::interrupt_callback __cb{ __it, 

    [&__mutex, &__state, &__asyncNotification, ​this ​] ​noexcept 
    { 

  ​if ​ (__state.exchange(_State::__interrupting) ==  
            _State::__waiting) 

      { 

        // We need to make sure that we acquire the mutex lock 

before 



        // signalling the condition_variable via notify_all() so 

that 

        // we are sure that the thread calling wait_for() has 

        // been enqueued onto the condition_variable’s wait-list. 

        // otherwise, the call to notify_all() may not wake up the 

        // wait_for() thread. 

        // 

        // However, if the thread that called __it.interrupt() 

        // currently holds the mutex and is executing the callback 

        // inline then it is undefined behaviour if we attempt to 

        // acquire the lock again in the same thread. 

        // So to guard against this we need to defer waiting for 

the 

        // mutex to be acquired to another thread. 

        // 

        // Implementations that are able to determine whether the 

        // current thread holds the mutex lock may be able to 

        // avoid this step and just call this->notify_all() 

        // in this case instead. 

 

        // Assign the resulting future to a variable in the scope 

        // of the wait_for() function so that the wait_for() 

        // function will not exit until the async notification 

        // operation has finished executing. 

        __asyncNotification = std::async( 

          std::launch::async, 

          [ ​this ​, &__mutex] ​noexcept 
          { 

            std::lock_guard __lock{ __mutex }; 

            // Notify the wait_for() function that we have acquired 

            // the mutex and that we will run to completion without 

            // further blocking. 

            __state.store(_State::__interrupted); 

            ​this ​->notify_all(); 
          }); 

  } 

    } 

  }; 

 

  ​while ​ ( ​true ​) 
  { 

    ​// Transition from __running to __waiting before we call 
wait(). 



    ​auto ​ __oldState = __state.exchange(_State::__waiting); 
if ​ (__oldState == _State::__interrupting) 
{ 

      // Interrupt callback has executed and transitioned the 

      // state to __interrupting. Since it will have seen our 

      // our previous state as __running it will not have 

      // attempted to acquire the mutex and thus will eventually 

      // run to completion. 

      // This means that it is safe to exit this function and 

      // detach the callback which will wait for the callback to 

      // finish executing. 

      ​return false ​; 
    } 

 

    ​assert ​(__oldState == _State::__running); 
 

this ​->wait(__lock); 
 

__oldState = __state.exchange(_State::__running); 

if ​ (__oldState == _State::__interrupting) 
{ 

   // Callback thread has run and saw our state as __waiting and 

      // so is now currently waiting to acquire the mutex lock so 

      // that it can wake us up. 

      // 

   // We can't let the '__cb' or ‘__asyncNotification’ 

destructor 

      // run while we hold the lock since we will block waiting for 

      // the callback to run to completion first which will 

deadlock. 

      // 

      // Instead, we voluntarily release the mutex lock here to 

allow 

      // the callback to acquire the mutex and we wait until it has 

      // signalled that it has acquired the mutex by setting the 

      // state to __interrupted and waking us up again. 

     ​ this ​->wait(__lock, [&__state] 
        { 

          // State will only be modified by callback while it is 

          // holding the mutex now so it is safe to use relaxed 

          // memory order. 

          ​return ​ __state.load(std::memory_order_relaxed) == 
            _State::__interrupted); 



        }); 

      ​return false ​; 
} 

else if ​ (__oldState == _State::__interrupted) 
{ 

   // Callback has executed and acquired the mutex and will 

      // continue to run to completion (if it hasn’t already). 

      // Safe to let the ‘__cb’ destructor run and block waiting 

for 

      // the callback to finish executing. 

   ​return false ​; 
} 

else if ​ (__pred()) 
{ 

      // We have set the state to __running. If the interrupt 

      // callback does run concurrently then it will see the 

      // __running state and will run to completion without 

      // waiting. So it’s safe to return and deregister the 

      // callback here. 

   ​return true ​; 
} 

  } 

} 

Splitting Signalling and Responding to Interruption 
The jthread proposal proposes a single type that can be used for both signalling interruption by 
calling the ​token.interrupt() ​ method as well as responding to interruption by querying 
token. 
 
The concern with this design is that it becomes difficult to isolate responsibility for signalling 
interruption from those operations that only need to respond to interruption. It is not possible to 
pass an ​interrupt_token ​ into an opaque interruptible function and guarantee that it will not 
call ​.interrupt() ​ on that token. 
 

For example, say we had an interruptible operation and we wanted to cancel the operation after 
a certain timeout had elapsed, or when the ​interrupt_token ​ passed into this function was 
interrupted. 
 
Example: A naive implementation of a timeout. 
task< ​void ​> do_work(interrupt_token itoken); 
 



task< ​bool ​> timeout_example(interrupt_token itoken) 
{ 

  ​auto ​ [_, result] = ​co_await ​ when_all( 
    [&]() -> task<> 

    { 

      // Interrupt do_work() when async_sleep() completes. 

      scope_guard interruptOnExit = [&] { itoken.interrupt(); }; 

      ​co_await ​ async_sleep(100ms, itoken); 
    }(), 

    [&]() -> task<> 

    { 

      // Interrupt async_sleep() when do_work() completes. 

      scope_guard interruptOnExit = [&] { itoken.interrupt(); }; 

      ​co_await ​ do_work(itoken); 
    }); 

 

  ​co_return ​ result; 
} 

 
The problem with this approach is that this function has now called ​.interrupt() ​ on the 
interrupt_token ​ that was passed in to it. This means that if that same interrupt token had 
been (or will be) passed into some other operation then it too would also now be interrupted. 
 
task< ​void ​> higher_level_call(interrupt_token itoken) 
{ 

  ​bool ​ succeeded = ​co_await ​ timeout_example(itoken); 
  ​if ​ (!succeeded) { 
    // Whoops! ‘itoken’ will now be in the interrupted state. 

    // So our fallback code will now be immediately interrupted 

    // even though our caller did not request interruption. 

    ​co_await ​ do_something_else(itoken); 
  } 

 } 

 
This makes it difficult to reason about the interruption behaviour of code as any opaque function 
that you pass an ​interrupt_token ​ into may potentially call ​.interrupt() ​ on that token. 

Proposed API 
If we want to prevent code that we pass an ​interrupt_token ​ into from signalling the 
interrupt then we need to split the facilities for signalling an interrupt from the facilities from 
responding to an interrupt request so that we can pass an object that allows the function to 
respond to interruption but that does not allow signalling an interrupt. 



 
The following interface is proposed as an alternative: 
namespace ​ std 
{ 

  ​class ​ interrupt_token 
  { 

  ​public ​: 
    interrupt_token() ​noexcept ​; ​// can never be interrupted 
    interrupt_token( ​const ​ interrupt_token&) ​noexcept ​; 
    interrupt_token(interrupt_token&&) ​noexcept ​; 
    ~interrupt_token(); 

    interrupt_token& operator=(interrupt_token&&) ​noexcept ​; 
    interrupt_token& operator=(const interrupt_topken&) ​noexcept ​; 
  

    ​bool ​ is_interrupted() ​const noexcept ​; 
    ​bool ​ is_interruptible() ​const noexcept ​; 
 

    // Comparison operators/swap() omitted for brevity 

  }; 

 

  ​class ​ interrupt_source 
  { 

  ​public ​: 
    interrupt_source(); ​// constructs a new shared-state 
    interrupt_source( ​const ​ interrupt_source&) ​noexcept ​; 
    interrupt_source(interrupt_source&&) ​noexcept ​; 
    interrupt_source& operator=( ​const ​ interrupt_source&) ​noexcept ​; 
    interrupt_source& operator=(interrupt_source&&) ​noexcept ​; 

 

    ​bool ​ is_interrupted() ​const noexcept ​; 
    bool ​ is_interruptible() ​const noexcept ​; 
 

    // Request interruption of all interrupt_token objects obtained 

    // via get_token() or by copying a token returned from 

    // get_token(). 

    ​bool ​ interrupt() ​const ​ ​noexcept ​; 
 

    interrupt_token get_token() ​const noexcept ​; 
 

    ​// Comparison operators/swap() omitted for brevity 
  }; 

 

  ​template ​< ​typename ​ Callback> 



  ​class ​ interrupt_callback 
  { 

    ​// as per “Callbacks” section above. 
  }; 

} 
 

The ​timeout_example()​ revisited 
With this interface used in conjunction with the ​interrupt_callback ​ facility from the first 
section of this paper it now becomes possible to safely pass an ​interrupt_token ​ into a 
function without needing to worry about whether that function could potentially signal an 
interrupt on the token passed in (it cannot). 
 
Example: The above ​timeout_example() ​ modified to work with ​interrupt_source 
task<> do_work(interrupt_token it); 

 

task< ​bool ​> timeout_example(interrupt_token it) 
{ 

  // Introduce a new interrupt_source that can be used to interrupt 

  // child operations independently of operations outside of this 

  // scope. 

  interrupt_source interrupter; 

 

  // Attach a callback to the incoming interrupt_token so that 

  // the child operations are interrupted if ‘it’ is interrupted. 

  interrupt_callback cb{ it, [&] { interrupter.interrupt(); }}; 

 

  ​auto ​ [_, result] = ​co_await ​ when_all( 
    [&]() -> task<> 

    { 

      // Interrupt do_work() once async_sleep() completes. 

      scope_guard interruptOnExit = [&] { interrupter.interrupt(); 

}; 

      ​co_await ​ async_sleep(100ms, interrupter.get_token()); 
    }(), 

    [&]() -> task< ​bool ​> 
    { 

      ​// Interrupt async_sleep() once do_work() finishes. 
      scope_guard interruptOnExit = [&] { interrupter.interrupt(); 

}; 

      ​co_return ​ ​co_await ​ do_work(interrupter.get_token()); 
    }()); 



 

  ​co_return ​ result; 
} 

 
By splitting the two ends of the interruption signal into distinct types, we are forcing the 
implementation of the ​timeout_example() ​ function to explicitly introduce a new interruption 
scope by creating a new ​interrupt_source ​ object on which they can call ​.interrupt() ​. 
 
This encourages writing functions that are better-encapsulated and isolated from each other 
with respect to interruption. 

An optimisation opportunity with ​is_interruptible() 
The proposed API above includes an ​is_interruptible() ​ method on both the 
interrupt_token ​ and on the ​interrupt_source ​ objects. 
 
The ​is_interruptible() ​ method replaces the existing ​valid() ​ method on 
interrupt_token ​ that was proposed in the jthread paper but generalises it to also cover 
detecting the case where an ​interrupt_token ​ was originally constructed from a valid 
interrupt_source ​ but where there are no longer any more ​interrupt_source ​ objects 
that reference the shared interrupt state and thus there is no possibility of anything signalling an 
interrupt. 
 
This will allow code to execute a fast-path that avoids overheads necessary to handle 
interruption in the case that there are no more ​interrupt_source ​ objects that could signal 
interruption in addition to the case where a default-constructed ​interrupt_token ​ was 
passed in (which was a case already handled well by ​valid() ​). 

Naming / Bikeshedding 
This paper proposes the names ​interrupt_source ​ and ​interrupt_callback ​ for the 
proposed new abstractions in addition to the existing ​interrupt_token ​ abstraction proposed 
in the jthread paper. 
 
These names should be considered as initial suggestions and are open for discussion. 
 
If the committee decides to pursue the modifications proposed in this paper then it may be 
worthwhile to re-evaluate the naming of these abstractions in light of the additional facilities. 
 
A (non-exhaustive) list of alternatives to be considered: 

● interrupt_token    interrupt_source    interrupt_callback 

● interrupt_receiver interrupt_signaller interrupt_subscription 



● cancellation_token cancellation_source 

cancellation_registration 

Conclusion 
There is great value in having a general purpose vocabulary type that can be used for signalling 
and responding to interrupt requests within the standard library. 
 
However, the current design of ​interrupt_token ​ as proposed in the jthread paper D0660R5 
does not address the needs for interruptible asynchronous operations, such as asynchronous 
I/O, that require active steps to be taken to interrupt them. 
 
Further, the lack of separation between the interfaces for signalling an interrupt and responding 
to an interrupt request makes it difficult and error-prone to write well-encapsulated and isolated 
interruptible operations. 
 
This paper proposes a facility that allows callbacks to be registered with an ​interrupt_token 
for the scope of an operation by constructing an ​interrupt_callback ​ object. 
 
This paper also proposes splitting the responsibilities of signalling an interrupt and responding 
to an interrupt into two separate classes; ​interrupt_source ​ and ​interrupt_token ​, to 
allow developers to write interruptible functions that are more likely to be correct and easier to 
reason about. 
 
The committee is encouraged to consider the enhancements put forward in this proposal in 
conjunction with the jthread paper P0660R5. 






