

Document No. P1287R0

Date 2018-10-08

Reply To Lewis Baker <​lbaker@fb.com​>
Kirk Shoop <​kirkshoop@fb.com​>

Audience SG1, LEWG

Supporting async use-cases for
interrupt_token

Abstract
The jthread paper (​P0660R4​) which seeks to introduce a joinable thread, ​std::jthread ​, also
proposes to add a new type ​std::interrupt_token ​ that can be used to interrupt blocking
wait operations on a ​std::condition_variable ​.

The motivation for adding ​std::interrupt_token ​ in the jthread paper seems to be primarily
as a mechanism to allow interrupting a thread’s blocking operations so that we can safely join
the thread in the jthread destructor. The destructor signals the ​interrupt_token ​ and then
calls ​.join() ​ on the thread.

However, there is also a need to be able to interrupt operations other than
std::condition_variable::wait() ​. With the pending introduction of coroutines,
executors and async networking and I/O into the C++ standard there will be a growing number
of asynchronous operations that will also need to support being interrupted.

The current interface of ​interrupt_token ​ as proposed provides only the ability to poll for
interruption. While this approach can work well for synchronous or parallel computations that
are actively executing and that can periodically check for interruption, the polling model does not
work well for asynchronous operations that may be suspended, waiting for some operation to
complete or some event to occur. Such operations typically need to execute some logic to
actively interrupt the operation.

In order to support the use-case of interrupting asynchronous operations there needs to be
some way for that operation to subscribe for notification that an ​interrupt_token ​ has been
interrupted.

mailto:lbaker@fb.com
mailto:kirkshoop@fb.com
https://wg21.link/P0660R4

This paper proposes adding the ability to attach multiple, independent callbacks to an
interrupt_token ​ for the lifetime of an RAII object of type
interrupt_callback<Callback> ​.

This paper also seeks to raise concerns about the design of ​interrupt_token ​ acting both as
a source of interruption signals and interface for responding to interruption signals. An
alternative design is proposed that separates the concerns of signalling interruption from
responding to interruption.

Callbacks
For ​interrupt_token ​ to be usable for interrupting asynchronous operations there needs to
be some way for those operations to be actively interrupted when interruption is requested.

For example, to interrupt an asynchronous I/O request on Windows you need to call
CancelIoEx() ​ to request that the OS cancel the operation.

In another example, if a coroutine was asynchronously waiting for a timer to elapse and we
wanted to interrupt this operation then we would need to actively perform some action to cancel
this timer and promptly resume the coroutine. If the only facility we have in ​interrupt_token
is the ability to poll for cancellation then this would mean the timer would need to periodically
wake up and check to see if it has been cancelled, increasing both the runtime cost and
introducing latency in responding to interruption.

The proposed solution to this is to add the ability to register callbacks that are associated with
the ​interrupt_token ​ such that the first thread to call ​interrupt_token::interrupt()
then executes all callbacks that were registered at the time inside the call to ​interrupt() ​.

The executed callbacks are then able to perform some action to actively interrupt whatever
operation is currently being waited on.

Proposed API
The proposed change to the API of ​interrupt_token ​ is the introduction of a new
interrupt_callback<Callback> ​ type that acts as a RAII object that is responsible for
registering the callback with the ​interrupt_token ​ on construction and deregistering the
callback on destruction.

Synopsis:
// <interrupt_token>

#include ​ ​<concepts>

namespace ​ std
{

 ​class ​ interrupt_token;

 ​// Exposition only
 ​class ​ __interrupt_callback_base
 {

 ​public ​:
 ​// Type erased call to callback.
 ​virtual ​ ​void ​ __call() ​noexcept ​ = 0;
 };

 ​template ​<Invocable Callback>
 ​class ​ interrupt_callback : ​private ​ __interrupt_callback_base
 {

 ​public ​:
 ​// Construction registers the callback with the interrupt_token
 interrupt_callback(

 interrupt_token&& it, Callback&& callback);

 interrupt_callback(

 ​const ​ interrupt_token& it, Callback&& callback);

 // Deregisters the callback from the interrupt_token.

 ~interrupt_callback();

 ​// Interrupt callbacks are not copyable or movable
 interrupt_callback(interrupt_callback&&) = ​delete ​;
 interrupt_callback(​const ​ interrupt_callback&) = ​delete ​;
 interrupt_callback& ​operator= ​(interrupt_callback&&) = ​delete ​;
 interrupt_callback& ​operator= ​(
 ​const ​ interrupt_callback&&) = ​delete ​;

 ​private ​:

 ​// Exposition only
 ​virtual ​ ​void ​ __call() ​noexcept ​ ​override
 {

 callback_();

 }

 ​// Exposition only

 interrupt_token it_;

 Callback callback_;

 };

 ​template ​< ​typename ​ Callback>
 interrupt_callback(interrupt_token&&, Callback&&)

 -> interrupt_callback<Callback>;

 ​template ​< ​typename ​ Callback>
 interrupt_callback(​const ​ interrupt_token&, Callback&&)
 -> interrupt_callback<Callback>;

}

Example usage:
Example: Cancelling a timer
#include ​<interrupt_token>

task< ​void ​> async_sleep(
 std::chrono::milliseconds duration,

 std::interrupt_token it)

{

 ​auto ​ timer = timer::create(duration);

 // Register a callback to be run if interruption is requested.

 ​// Callback template parameter is deduced due to deduction
guides.

 std::interrupt_callback cb{ it, [&timer] { timer.cancel(); } };

 // Asynchronously wait for time to elapse.

 // This will resume early if timer.cancel() is called.

 ​co_await ​ timer;

 ​// Callback automatically deregistered at end of scope.
}

Semantics:
bool std::interrupt_token::interrupt() noexcept;

Effects:​ If ​!valid() || is_interrupted() ​ the call has no effect. Otherwise, signals an
interrupt so that ​is_interrupted() == true ​ and then executes the callbacks of all
interrupt_callback ​ objects currently associated with the same ​interrupt_token ​ state
(​interrupt_token ​ objects copied or moved from the same initial ​interrupt_token
object).

Ensures:​ ​!valid() || is_interrupted()
Returns: ​The value of ​is_interrupted() ​ prior to the call.

template<typename Callback>

std::interrupt_callback<Callback>::interrupt_callback(

 interrupt_token&& it,

 Callback&& callback);

template<typename Callback>

std::interrupt_callback<Callback>::interrupt_callback(

 const interrupt_token& it,

 Callback&& callback);

Effects:​ Copies ‘​callback ​’ into the ​interrupt_callback ​ object. If
it.is_interrupted() ​ is true on entry to the constructor then invokes the callback in the
current thread before the constructor returns. Otherwise, associates this callback with the
interrupt_token ​ so that if some thread subsequently calls ​it.interrupt() ​ then this
callback object will be invoked.
Synchronisation:​ Guarantees that, if there is a concurrent call to ​it.interrupt() ​ on another
thread that either the other thread will ‘synchronise with’ the callback registration and will
execute the callback before the call to ​it.interrupt() ​ returns, or this thread will
‘synchronise with’ the call to ​it.interrupt() ​ and will execute the callback inline before the
constructor returns.
Exceptions:​ Throws any exception thrown by Callback’s move-constructor or
std::bad_alloc ​ if memory could not be allocated for the callback registration. The callback
will not be invoked or have been invoked if the call to the constructor exits with an exception.

template<typename Callback>

std::interrupt_callback<Callback>::~interrupt_callback();

Effects:​ Deregisters the callback from the associated ​interrupt_token ​. A subsequent call to
.interrupt() ​ on the ​interrupt_token ​ will not execute this callback.
Synchronisation:​ If another thread has made a concurrent call to
interrupt_token::interrupt() ​ then either the callback will be deregistered prior to the
other thread executing the callback and the callback will not run, or the other thread will execute
the callback and the destructor will not return until after the callback has finished executing.
Exceptions:​ None. If the ​Callback ​ destructor throws an exception then ​std::terminate()
is called.

Design Discussion

Why do we need to support multiple callbacks?
There were some suggestions at the ad-hoc Executors meeting in Bellevue that we may be able
to get away with an implementation that supports only a single callback if we can have the

callbacks chain execution on to each other. eg. if the most recently registered callback executes
the previously registered callback, and so on until the end of the chain is reached.

This design would be sufficient if callbacks were registered and never deregistered or if
callbacks were only ever registered with strictly nested lifetimes. However, as we will often want
to temporarily register an interrupt callback only for the duration of an operation this rules out
the first case. And since an ​interrupt_token ​ is able to be copied, it can potentially be
passed to multiple functions or coroutines that execute concurrently and thus the lifetimes of the
callback registrations may not be strictly nested.

Note that use-cases of ​interrupt_token ​ with coroutines could conceivably need to handle
many thousands to millions of concurrent interruptible operations registering callbacks with an
interrupt token at any one point in time.

Where do the callbacks run?
There are several options for where the callbacks should execute. It could be in some
runtime-defined thread (eg. using ​std::async() ​), or we could require that the callback
registration provide an executor that will execute the callback, or it could be on the thread that
calls ​.interrupt() ​.

The simplest solution, and the solution proposed by this paper, is to execute the callbacks inline
within the first call to ​.interrupt() ​ on the ​interrupt_token ​.

If there multiple calls to ​.interrupt() ​ then only the first call will execute the callback.
Subsequent calls to ​.interrupt() ​ will be a no-op and will return immediately.

Avoiding heap allocations for callbacks
When a client of the ​interrupt_token ​ wants to register a callback, the invocable
object/function-pointer for the callback needs to be stored somewhere and type-erased so that
the ​interrupt_token::interrupt() ​ implementation can call it.

By having the ​interrupt_callback ​ object be templated on the callback-type it can then
store the callback object inline inside the ​interrupt_callback ​ object along with any other
implementation-specific state required to be able to register the callback with the
interrupt_token ​. This can avoid the need to store the callback on the heap (eg. as it might
if using ​std::function<void()> ​ to store the callback).

One possible implementation that would not require any additional heap-allocations to register a
callback would be to store two additional pointers in the ​interrupt_callback ​ object and
have the constructor insert itself into an intrusive doubly-linked list in the ​interrupt_token
state (using appropriate synchronisation).

Another possible implementation is the one used by the cppcoro library’s 1

cancellation_token ​ type. This implementation allocates a pool of pointers to callback
objects internally in the ​interrupt_token ​ state and then uses a lock-free algorithm to
atomically register the callback object with a slot in this pool. This allows lock-free registration
and (mostly) lock-free deregistration of callbacks. Deregistering a callback will block only when
there is a concurrent call to .interrupt() on another thread.

Memory used by this pool of pointers is not reclaimed until the last ​interrupt_token
referencing the shared-state is destroyed, however, this memory is reused by subsequent
callback registrations.

Other implementation strategies that make use of deferred reclaimation techniques may be 2

possible here. This is an area for future research.

Overhead of supporting callbacks
The overhead of supporting callbacks in the ​interrupt_token ​ interface in the case where
callbacks are never registered can be made negligible for polling-only use-cases.

For example, the shared state in the cppcoro implementation looks like this:
struct ​cancellation_state
{

 // Bit 0 - cancellation requested

 // Bit 1 - cancellation notification complete

 // Bits 2-32 - Ref count for cancellation_source objects

 // Bits 33-63 - Ref count for cancellation_token objects

 std::atomic<std::uint64_t> m_state;

 std::atomic<cancellation_registration_state*>

m_registrationState;

};

The allocation of the data-structure used to store callbacks is deferred until the first callback is
registered. If you never register a callback against the ​interrupt_token ​ then the storage
overhead is simply that of a single pointer.

This means that for polling-only use-cases of ​interrupt_token ​ the implementation can be
made as space efficient as a ​std::shared_ptr<std::atomic<bool>> ​.

1 ​https://github.com/lewissbaker/cppcoro
2 See Hazard Pointers and RCU facilities proposed in P0566 and P1122.

https://github.com/lewissbaker/cppcoro

What happens if callbacks throw an exception?
If a callback that was registered with the ​interrupt_token ​ were to throw an exception when
called then we need to decide what happens with that exception.

If the exception were to propagate out of the call to ​interrupt_token::interrupt() ​ that
was executing the callback then this could have the potential to introduce the exception into a
context that is remote from and knows nothing about how to handle the exception.

Further, this raises the question of what the ​interrupt() ​ implementation should do if there
were multiple callbacks to execute and the first callback threw an exception. Ideally it should
continue notifying the other registered callbacks as otherwise their operations would not be
interrupted. But then what if those other callbacks also throw an exception? Should the
exceptions be aggregated and rethrown once all callbacks had been executed?

The simplest solution here seems to be to require that the callback not throw an exception. If the
implementation of a callback that is attempting to interrupt some operation that can potentially
fail then it seems logical to have that callback handle that error and either do it’s best to interrupt
the operation or call ​std::terminate() ​ if such failure was fatal or unrecoverable.

The proposed semantics, then, is to require that the callback be invoked in a noexcept context
so that if the callback did throw an exception then this would result in ​std::terminate()
being called.

Risks of introducing callbacks
One of the risks of adding support for callbacks to the design of ​interrupt_token ​ is that it
means that code that registers a callback can potentially introduce execution of arbitrary code
into the execution context of another thread which calls ​.interrupt() ​ on the token.

Without care, it can be easy for this to potentially introduce deadlocks if the implementation of
those callbacks are not lock-free. For example, if a callback tries to acquire a mutex lock but the
calling thread already holds the mutex lock while calling ​.interrupt() ​ then this will lead to a
deadlock. The example implementation of an interruptible condition_variable::wait_for().

For code where this is a potential problem, the calling code may need to execute the callbacks
on a separate context. This can be done by scheduling the invocation of the callbacks to a
different execution context. eg. using an executor.

There are two approaches to this:

● The caller can schedule the call to ​.interrupt() ​ onto an executor.
eg. ​executor.defer([token] { token.interrupt(); });
This will schedule once and then execute each of the callbacks in-turn on the executor.

● The individual callbacks that are not lock-free can schedule execution onto another
execution context in the event they would need to block inside the callback. eg.
interrupt_callback cb{ token, [executor, &] {

 executor.defer([&] { ​/* interruption logic here */ ​ });
}};

Both approaches are possible with the proposed design. However, without higher-level
knowledge of the context in which ​.interrupt() ​ will be called, callback implementations will
generally need to act defensively and use the second approach to ensure they are lock free.

Interruptible ​condition_variable::wait_for() ​ using callbacks
The jthread paper proposes to add overloads of ​condition_variable ​ wait operations that 3

can be interrupted via an ​interrupt_token ​.

There are two main strategies to implementing an interruptible
condition_variable::wait() ​. The first is to have the wait operation periodically wake up
and check the state of the ​interrupt_token ​ to see if it has been interrupted. The second is
to register a list of ​condition_variable ​ operations to be interrupted with the
interrupt_token ​ so that the call to ​.interrupt() ​ can actively interrupt them.

An implementation that wanted to use the second approach would need to create a mechanism
internally that was effectively equivalent to registering callbacks. The implementation could
potentially be optimised as it could assume that the callbacks are only ever interrupting
condition_variable ​ wait operations, but it would still need to store a collection of
operations to interrupt.

Instead, if we were to make this callback facility a part of the public ​interrupt_token ​ API
then we could build the interruptible ​condition_variable::wait_for() ​ operation on top
of this callback facility and the existing standard library public interface.

This would also make it possible to later extend the ability to interrupt other kinds of operations
in the standard library (eg. ​std::semaphore::acquire(), std::mutex::lock() ​)
without needing to modify the implementation of ​interrupt_token ​ and worry about ABI
compatibility/breakage.

Below is a potential implementation of an interruptible ​condition_variable::wait_for()
operation that uses ​interrupt_callback ​ and the public ​condition_variable ​ APIs.
Note that particular standard library implementations may be able to provide a more efficient
implementation by taking advantage of internal implementation details.

3 P0660R4 jthread paper presented at Bellevue 2018

A correct implementation is subtle and difficult to get right due to the potential for either
introducing deadlock or missed wake-ups. For this reason, it is important that the standard
library provide interruptible implementations of these methods rather than relying on users to
implement them correctly using ​interrupt_callback ​ themselves.

Example: A potential implementation of interruptible ​condition_variable::wait_for()
using ​interrupt_callback.
template ​< ​typename ​ _Pred>
bool ​ std::condition_variable::wait_for(
 std::unique_lock<std::mutex>& __lock,

 std::interrupt_token __it,

 _Pred __pred)

{

 // Don’t incur overhead of interrupt_callback if we can never be

 // interrupted.

 if (!__it.valid())

 {

 ​return this ​->wait(__lock, std::move(__pred));
 }

 ​if ​ (__it.is_interrupted()) ​return false ​;

 ​if ​ (__pred()) ​return true ​;

 ​enum class ​ _State {
__waiting,

__running,

__interrupting,

__interrupted

 };

 std::atomic<_State> __state{ _State::__running };

 std::mutex& __mutex = *__lock.mutex();

 std::future< ​void ​> __asyncNotification;

 std::interrupt_callback __cb{ __it,

 [&__mutex, &__state, &__asyncNotification, ​this ​] ​noexcept
 {

 ​if ​ (__state.exchange(_State::__interrupting) ==
 _State::__waiting)

 {

 // We need to make sure that we acquire the mutex lock

before

 // signalling the condition_variable via notify_all() so

that

 // we are sure that the thread calling wait_for() has

 // been enqueued onto the condition_variable’s wait-list.

 // otherwise, the call to notify_all() may not wake up the

 // wait_for() thread.

 //

 // However, if the thread that called __it.interrupt()

 // currently holds the mutex and is executing the callback

 // inline then it is undefined behaviour if we attempt to

 // acquire the lock again in the same thread.

 // So to guard against this we need to defer waiting for

the

 // mutex to be acquired to another thread.

 //

 // Implementations that are able to determine whether the

 // current thread holds the mutex lock may be able to

 // avoid this step and just call this->notify_all()

 // in this case instead.

 // Assign the resulting future to a variable in the scope

 // of the wait_for() function so that the wait_for()

 // function will not exit until the async notification

 // operation has finished executing.

 __asyncNotification = std::async(

 std::launch::async,

 [​this ​, &__mutex] ​noexcept
 {

 std::lock_guard __lock{ __mutex };

 // Notify the wait_for() function that we have acquired

 // the mutex and that we will run to completion without

 // further blocking.

 __state.store(_State::__interrupted);

 ​this ​->notify_all();
 });

 }

 }

 };

 ​while ​ (​true ​)
 {

 ​// Transition from __running to __waiting before we call
wait().

 ​auto ​ __oldState = __state.exchange(_State::__waiting);
if ​ (__oldState == _State::__interrupting)
{

 // Interrupt callback has executed and transitioned the

 // state to __interrupting. Since it will have seen our

 // our previous state as __running it will not have

 // attempted to acquire the mutex and thus will eventually

 // run to completion.

 // This means that it is safe to exit this function and

 // detach the callback which will wait for the callback to

 // finish executing.

 ​return false ​;
 }

 ​assert ​(__oldState == _State::__running);

this ​->wait(__lock);

__oldState = __state.exchange(_State::__running);

if ​ (__oldState == _State::__interrupting)
{

 // Callback thread has run and saw our state as __waiting and

 // so is now currently waiting to acquire the mutex lock so

 // that it can wake us up.

 //

 // We can't let the '__cb' or ‘__asyncNotification’

destructor

 // run while we hold the lock since we will block waiting for

 // the callback to run to completion first which will

deadlock.

 //

 // Instead, we voluntarily release the mutex lock here to

allow

 // the callback to acquire the mutex and we wait until it has

 // signalled that it has acquired the mutex by setting the

 // state to __interrupted and waking us up again.

 ​ this ​->wait(__lock, [&__state]
 {

 // State will only be modified by callback while it is

 // holding the mutex now so it is safe to use relaxed

 // memory order.

 ​return ​ __state.load(std::memory_order_relaxed) ==
 _State::__interrupted);

 });

 ​return false ​;
}

else if ​ (__oldState == _State::__interrupted)
{

 // Callback has executed and acquired the mutex and will

 // continue to run to completion (if it hasn’t already).

 // Safe to let the ‘__cb’ destructor run and block waiting

for

 // the callback to finish executing.

 ​return false ​;
}

else if ​ (__pred())
{

 // We have set the state to __running. If the interrupt

 // callback does run concurrently then it will see the

 // __running state and will run to completion without

 // waiting. So it’s safe to return and deregister the

 // callback here.

 ​return true ​;
}

 }

}

Splitting Signalling and Responding to Interruption
The jthread proposal proposes a single type that can be used for both signalling interruption by
calling the ​token.interrupt() ​ method as well as responding to interruption by querying
token.

The concern with this design is that it becomes difficult to isolate responsibility for signalling
interruption from those operations that only need to respond to interruption. It is not possible to
pass an ​interrupt_token ​ into an opaque interruptible function and guarantee that it will not
call ​.interrupt() ​ on that token.

For example, say we had an interruptible operation and we wanted to cancel the operation after
a certain timeout had elapsed, or when the ​interrupt_token ​ passed into this function was
interrupted.

Example: A naive implementation of a timeout.
task< ​void ​> do_work(interrupt_token itoken);

task< ​bool ​> timeout_example(interrupt_token itoken)
{

 ​auto ​ [_, result] = ​co_await ​ when_all(
 [&]() -> task<>

 {

 // Interrupt do_work() when async_sleep() completes.

 scope_guard interruptOnExit = [&] { itoken.interrupt(); };

 ​co_await ​ async_sleep(100ms, itoken);
 }(),

 [&]() -> task<>

 {

 // Interrupt async_sleep() when do_work() completes.

 scope_guard interruptOnExit = [&] { itoken.interrupt(); };

 ​co_await ​ do_work(itoken);
 });

 ​co_return ​ result;
}

The problem with this approach is that this function has now called ​.interrupt() ​ on the
interrupt_token ​ that was passed in to it. This means that if that same interrupt token had
been (or will be) passed into some other operation then it too would also now be interrupted.

task< ​void ​> higher_level_call(interrupt_token itoken)
{

 ​bool ​ succeeded = ​co_await ​ timeout_example(itoken);
 ​if ​ (!succeeded) {
 // Whoops! ‘itoken’ will now be in the interrupted state.

 // So our fallback code will now be immediately interrupted

 // even though our caller did not request interruption.

 ​co_await ​ do_something_else(itoken);
 }

 }

This makes it difficult to reason about the interruption behaviour of code as any opaque function
that you pass an ​interrupt_token ​ into may potentially call ​.interrupt() ​ on that token.

Proposed API
If we want to prevent code that we pass an ​interrupt_token ​ into from signalling the
interrupt then we need to split the facilities for signalling an interrupt from the facilities from
responding to an interrupt request so that we can pass an object that allows the function to
respond to interruption but that does not allow signalling an interrupt.

The following interface is proposed as an alternative:
namespace ​ std
{

 ​class ​ interrupt_token
 {

 ​public ​:
 interrupt_token() ​noexcept ​; ​// can never be interrupted
 interrupt_token(​const ​ interrupt_token&) ​noexcept ​;
 interrupt_token(interrupt_token&&) ​noexcept ​;
 ~interrupt_token();

 interrupt_token& operator=(interrupt_token&&) ​noexcept ​;
 interrupt_token& operator=(const interrupt_topken&) ​noexcept ​;

 ​bool ​ is_interrupted() ​const noexcept ​;
 ​bool ​ is_interruptible() ​const noexcept ​;

 // Comparison operators/swap() omitted for brevity

 };

 ​class ​ interrupt_source
 {

 ​public ​:
 interrupt_source(); ​// constructs a new shared-state
 interrupt_source(​const ​ interrupt_source&) ​noexcept ​;
 interrupt_source(interrupt_source&&) ​noexcept ​;
 interrupt_source& operator=(​const ​ interrupt_source&) ​noexcept ​;
 interrupt_source& operator=(interrupt_source&&) ​noexcept ​;

 ​bool ​ is_interrupted() ​const noexcept ​;
 bool ​ is_interruptible() ​const noexcept ​;

 // Request interruption of all interrupt_token objects obtained

 // via get_token() or by copying a token returned from

 // get_token().

 ​bool ​ interrupt() ​const ​ ​noexcept ​;

 interrupt_token get_token() ​const noexcept ​;

 ​// Comparison operators/swap() omitted for brevity
 };

 ​template ​< ​typename ​ Callback>

 ​class ​ interrupt_callback
 {

 ​// as per “Callbacks” section above.
 };

}

The ​timeout_example()​ revisited
With this interface used in conjunction with the ​interrupt_callback ​ facility from the first
section of this paper it now becomes possible to safely pass an ​interrupt_token ​ into a
function without needing to worry about whether that function could potentially signal an
interrupt on the token passed in (it cannot).

Example: The above ​timeout_example() ​ modified to work with ​interrupt_source
task<> do_work(interrupt_token it);

task< ​bool ​> timeout_example(interrupt_token it)
{

 // Introduce a new interrupt_source that can be used to interrupt

 // child operations independently of operations outside of this

 // scope.

 interrupt_source interrupter;

 // Attach a callback to the incoming interrupt_token so that

 // the child operations are interrupted if ‘it’ is interrupted.

 interrupt_callback cb{ it, [&] { interrupter.interrupt(); }};

 ​auto ​ [_, result] = ​co_await ​ when_all(
 [&]() -> task<>

 {

 // Interrupt do_work() once async_sleep() completes.

 scope_guard interruptOnExit = [&] { interrupter.interrupt();

};

 ​co_await ​ async_sleep(100ms, interrupter.get_token());
 }(),

 [&]() -> task< ​bool ​>
 {

 ​// Interrupt async_sleep() once do_work() finishes.
 scope_guard interruptOnExit = [&] { interrupter.interrupt();

};

 ​co_return ​ ​co_await ​ do_work(interrupter.get_token());
 }());

 ​co_return ​ result;
}

By splitting the two ends of the interruption signal into distinct types, we are forcing the
implementation of the ​timeout_example() ​ function to explicitly introduce a new interruption
scope by creating a new ​interrupt_source ​ object on which they can call ​.interrupt() ​.

This encourages writing functions that are better-encapsulated and isolated from each other
with respect to interruption.

An optimisation opportunity with ​is_interruptible()
The proposed API above includes an ​is_interruptible() ​ method on both the
interrupt_token ​ and on the ​interrupt_source ​ objects.

The ​is_interruptible() ​ method replaces the existing ​valid() ​ method on
interrupt_token ​ that was proposed in the jthread paper but generalises it to also cover
detecting the case where an ​interrupt_token ​ was originally constructed from a valid
interrupt_source ​ but where there are no longer any more ​interrupt_source ​ objects
that reference the shared interrupt state and thus there is no possibility of anything signalling an
interrupt.

This will allow code to execute a fast-path that avoids overheads necessary to handle
interruption in the case that there are no more ​interrupt_source ​ objects that could signal
interruption in addition to the case where a default-constructed ​interrupt_token ​ was
passed in (which was a case already handled well by ​valid() ​).

Naming / Bikeshedding
This paper proposes the names ​interrupt_source ​ and ​interrupt_callback ​ for the
proposed new abstractions in addition to the existing ​interrupt_token ​ abstraction proposed
in the jthread paper.

These names should be considered as initial suggestions and are open for discussion.

If the committee decides to pursue the modifications proposed in this paper then it may be
worthwhile to re-evaluate the naming of these abstractions in light of the additional facilities.

A (non-exhaustive) list of alternatives to be considered:

● interrupt_token interrupt_source interrupt_callback

● interrupt_receiver interrupt_signaller interrupt_subscription

● cancellation_token cancellation_source

cancellation_registration

Conclusion
There is great value in having a general purpose vocabulary type that can be used for signalling
and responding to interrupt requests within the standard library.

However, the current design of ​interrupt_token ​ as proposed in the jthread paper D0660R5
does not address the needs for interruptible asynchronous operations, such as asynchronous
I/O, that require active steps to be taken to interrupt them.

Further, the lack of separation between the interfaces for signalling an interrupt and responding
to an interrupt request makes it difficult and error-prone to write well-encapsulated and isolated
interruptible operations.

This paper proposes a facility that allows callbacks to be registered with an ​interrupt_token
for the scope of an operation by constructing an ​interrupt_callback ​ object.

This paper also proposes splitting the responsibilities of signalling an interrupt and responding
to an interrupt into two separate classes; ​interrupt_source ​ and ​interrupt_token ​, to
allow developers to write interruptible functions that are more likely to be correct and easier to
reason about.

The committee is encouraged to consider the enhancements put forward in this proposal in
conjunction with the jthread paper P0660R5.

