
Document Number: P1252R1
Date: 2018-11-15
Audience: Library Working Group
Author: Casey Carter
Reply to: casey@carter.net

Ranges Design Cleanup

Contents
1 Abstract 1

1.1 Revision History . 1

2 Deprecate move_iterator::operator-> 1
2.1 Technical Specifications . 1

3 ref-view => ref_view 2
3.1 Technical Specifications . 2

4 Comparison function object untemplates 3
4.1 Technical specifications . 4

5 Reversing a reverse_view 7
5.1 Technical specifications . 7

6 Use cases left dangling 7
6.1 Technical specifications . 8

Bibliography 9

ii

1 Abstract [intro]
This paper proposes several small, independent design tweaks to Ranges that came up during LWG review of
P0896 “The One Ranges Proposal” ([2]).
All wording sections herein are relative to the post-San Diego working draft.

1.1 Revision History [intro.history]
1.1.1 Revision 1 [intro.history.r1]

— Rebase wording onto post-San Diego working draft.
— Strike section that suggested making the exposition-only concepts in [special.mem.concepts] available

to users; this part of the proposal did not have consensus in LEWG.
— Update safe_subrange_t to account for potential dangling as well.

1.1.2 Revision 0 [intro.history.r0]
— In the beginning, all was cv-void. Suddenly, a proposal emerged from the darkness!

2 Deprecate move_iterator::operator->
[disarm]
C++17 [iterator.requirements.general]/1 states:

... An iterator i for which the expression (*i).m is well-defined supports the expression i->m
with the same semantics as (*i).m. ...

Input iterators are required to support the -> operator ([input.iterators]), and move_iterator is an input
iterator, so move_iterator’s arrow operator must satisfy that requirement, right? Sadly, it does not.
For a move_iterator, *i is an xvalue, so (*i).m is also an xvalue. i->m, however, is an lvalue. Consequently,
(*i).m and i->m can produce observably different behaviors as subexpressions - they are not substitutable,
as would be expected from a strict reading of “with the same semantics.” The fact that -> cannot be
implemented with “the same semantics” for iterators whose reference type is an rvalue was the primary
motivation for removing the -> requirement from the Ranges iterator concepts. It would benefit users to
deprecate move_iterator’s operator-> in C++20 as an indication that its semantics are not equivalent
and that it will ideally go away some day.

2.1 Technical Specifications [disarm.words]
— Strike move_iterator::operator-> from the class template synopsis in [move.iterator]:

namespace std {
template<class Iterator>
class move_iterator {

[...]
constexpr iterator_type base() const;
constexpr reference operator*() const;
constexpr pointer operator->() const;

constexpr move_iterator& operator++();
constexpr auto operator++(int);
[...]

};
}

1

https://wg21.link/special.mem.concepts
https://wg21.link/input.iterators

— Relocate the detailed specification of move_iterator::operator-> from [move.iter.elem]:

constexpr reference operator*() const;
1 Effects: Equivalent to: return ranges::iter_move(current);

constexpr pointer operator->() const;
2 Returns: current.

constexpr reference operator[](difference_type n) const;
3 Effects: Equivalent to: ranges::iter_move(current + n);

to a new subclause “Deprecated move_iterator access” in Annex D between [depr.iterator.primitives]
and [depr.util.smartptr.shared.atomic]:

1 The following member is declared in addition to those members specified in [move.iterator.elem]:
namespace std {

template<class Iterator>
class move_iterator {
public:

constexpr pointer operator->() const;
};

}

constexpr pointer operator->() const;
2 Returns: current.

3 ref-view => ref_view [ref]
The authors of P0896 added the exposition-only view type ref-view (P0896R4 [range.view.ref]) to serve as
the return type of view::all ([range.adaptors.all]) when passed an lvalue container. ref-view <T> is an
“identity view adaptor” – an adaptor which produces a view containing all the elements of the underlying range
exactly – of a Range of type T whose representation consists of a T*. A ref-view delegates all operations
through that pointer to the underlying Range.
The LEWG-approved design from P0789R3 “Range Adaptors and Utilities” ([1]) used subrange<iterator_-
t<R>, sentinel_t<R>> as the return type of view::all(c) for an lvalue c of type R. ref-view and subrange
are both identity view adaptors, so this change has little to no impact on the existing design. Why bother then?
Despite that replacing subrange with ref-view in this case falls under as-if, ref-view has some advantages.
Firstly, a smaller representation: ref-view is a single pointer, whereas subrange is an iterator plus a sentinel,
and sometimes a size. View compositions store many views produced by view::all, and many of those are
views of lvalue containers in typical usage.
Second, and more significantly, ref-view is future-proof. ref-view retains the exact type of the underlying
Range, whereas subrange erases down to the Range’s iterator and sentinel type. ref-view can therefore easily
model any and all concepts that the underlying range models simply by implementing any required expressions
via delegating to the actual underlying range, but subrange must store somewhere in its representation any
properties of the underlying range needed to model a concept which it cannot retrieve from an iterator and
sentinel. For example, subrange must store a size to model SizedRange when the underlying range is sized
but does not have an iterator and sentinel that model SizedSentinel. If we discover in the future that it is
desirable to have the View returned by view::all(container) model additional concepts, we will likely be
blocked by ABI concerns with subrange whereas ref-view can simply add more member functions and leave
its representation unchanged.
We’ve already realized these advantages for view composition by adding ref-view as an exposition-only View
type returned by view::all, but users may like to use it as well as a sort of "Ranges reference_wrapper".

3.1 Technical Specifications [ref.words]
— Update references to the name ref-view to ref_view in [range.adaptors.all]/2:

2

https://wg21.link/depr.iterator.primitives
https://wg21.link/depr.util.smartptr.shared.atomic
https://wg21.link/move.iterator.elem
https://wg21.link/range.view.ref
https://wg21.link/range.adaptors.all
https://wg21.link/range.adaptors.all

2 The name view::all denotes a range adaptor object ([range.adaptor.object]). For some
subexpression E, the expression view::all(E) is expression-equivalent to:
—2 DECAY_COPY(E) if the decayed type of E models View.
—2 Otherwise, ref-view {E}ref_view{E} if that expression is well-formed, where ref-view

is the exposition-only View specified below.
—2 Otherwise, subrange{E}.

—(2.1) Change the stable name [range.view.ref] to [range.ref.view] (for consistency with the stable names of
the other view classes defined in [range]), retitle to “class template ref_view” and modify as follows:

1 ref_view is a View of the elements of some other Range.
namespace std::ranges {

template<Range R>
requires is_object_v<R>

class ref_viewref_view : public view_interface<ref_viewref_view<R>> {
private:

R* r_ = nullptr; // exposition only
public:

constexpr ref_viewref_view() noexcept = default;

template<not-same-as <ref-view ref_view> T>
requires see below

constexpr ref_viewref_view(T&& t);

constexpr R& base() const;

constexpr iterator_t<R> begin() const { return ranges::begin(*r_); }
constexpr sentinel_t<R> end() const { return ranges::end(*r_); }

constexpr bool empty() const
requires requires { ranges::empty(*r_); }

{ return ranges::empty(*r_); }

constexpr auto size() const requires SizedRange<R>
{ return ranges::size(*r_); }

constexpr auto data() const requires ContiguousRange<R>
{ return ranges::data(*r_); }

friend constexpr iterator_t<R> begin(ref_viewref_view r)
{ return r.begin(); }

friend constexpr sentinel_t<R> end(ref_viewref_view r)
{ return r.end(); }

};
}

template<not-same-as <ref-view ref_view> T>
requires see below

constexpr ref_viewref_view(T&& t);

[...]

4 Comparison function object untemplates
[untemp]
During LWG review of P0896’s comparison function objects (P0896R3 [range.comparisons]) we were asked,
“Why are we propagating the design of the std comparison function objects, i.e. class templates that you
shouldn’t specialize because they cannot be specialized consistently with the void specializations that you
actually should be using?” For the Ranges TS, it was a design goal to minimize differences between std

3

https://wg21.link/range.adaptor.object
https://wg21.link/range.view.ref
https://wg21.link/range

and ranges to ease transition and experimentation. For the Standard, our goal should not be to minimize
differences but to produce the best design. (As was evidenced by the LEWG poll in Rapperswil suggesting
that we should not be afraid to diverge std and ranges components when there are reasons to do so.)
Absent a good reason to mimic the std comparison function objects exactly, we propose un-template-ing
the std::ranges comparion function objects, leaving only concrete classes with the same behavior as the
prior void specializations.

4.1 Technical specifications [untemp.words]
In [functional.syn], modify the declarations of the ranges comparison function objects as follows:

[...]

namespace ranges {
// [range.comparisons], comparisons
template<class T = void>

requires see below
struct equal_to;

template<class T = void>
requires see below

struct not_equal_to;

template<class T = void>
requires see below

struct greater;

template<class T = void>
requires see below

struct less;

template<class T = void>
requires see below

struct greater_equal;

template<class T = void>
requires see below

struct less_equal;

template<> struct equal_to<void>;
template<> struct not_equal_to<void>;
template<> struct greater<void>;
template<> struct less<void>;
template<> struct greater_equal<void>;
template<> struct less_equal<void>;

}

[...]

Update the specifications in [range.comparisons] as well:
2 There is an implementation-defined strict total ordering over all pointer values of a given type. This total

ordering is consistent with the partial order imposed by the builtin operators <, >, <=, and >=.

template<class T = void>
requires EqualityComparable<T> || Same<T, void> || BUILTIN_PTR_CMP(const T&, ==, const T&)

struct equal_to {
constexpr bool operator()(const T& x, const T& y) const;

};

3 operator() has effects equivalent to: return ranges::equal_to<>{}(x, y);

template<class T = void>
requires EqualityComparable<T> || Same<T, void> || BUILTIN_PTR_CMP(const T&, ==, const T&)

struct not_equal_to {
constexpr bool operator()(const T& x, const T& y) const;

4

https://wg21.link/range.comparisons
https://wg21.link/range.comparisons

};

4 operator() has effects equivalent to: return !ranges::equal_to<>{}(x, y);

template<class T = void>
requires StrictTotallyOrdered<T> || Same<T, void> || BUILTIN_PTR_CMP(const T&, <, const T&)

struct greater {
constexpr bool operator()(const T& x, const T& y) const;

};

5 operator() has effects equivalent to: return ranges::less<>{}(y, x);

template<class T = void>
requires StrictTotallyOrdered<T> || Same<T, void> || BUILTIN_PTR_CMP(const T&, <, const T&)

struct less {
constexpr bool operator()(const T& x, const T& y) const;

};

6 operator() has effects equivalent to: return ranges::less<>{}(x, y);

template<class T = void>
requires StrictTotallyOrdered<T> || Same<T, void> || BUILTIN_PTR_CMP(const T&, <, const T&)

struct greater_equal {
constexpr bool operator()(const T& x, const T& y) const;

};

7 operator() has effects equivalent to: return !ranges::less<>{}(x, y);

template<class T = void>
requires StrictTotallyOrdered<T> || Same<T, void> || BUILTIN_PTR_CMP(const T&, <, const T&)

struct less_equal {
constexpr bool operator()(const T& x, const T& y) const;

};

8 operator() has effects equivalent to: return !ranges::less<>{}(y, x);

template<> struct equal_to<void> {
template<class T, class U>

requires EqualityComparableWith<T, U> || BUILTIN_PTR_CMP(T, ==, U)
constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

9 Expects: If the expression std::forward<T>(t) == std::forward<U>(u) results in a call to a built-in
operator == comparing pointers of type P, the conversion sequences from both T and U to P shall be
equality-preserving ([concepts.equality]).

10 Effects:
—(10.1) If the expression std::forward<T>(t) == std::forward<U>(u) results in a call to a built-in

operator == comparing pointers of type P: returns false if either (the converted value of) t
precedes u or u precedes t in the implementation-defined strict total order over pointers of type P
and otherwise true.

—(10.2) Otherwise, equivalent to: return std::forward<T>(t) == std::forward<U>(u);

template<> struct not_equal_to<void> {
template<class T, class U>

requires EqualityComparableWith<T, U> || BUILTIN_PTR_CMP(T, ==, U)
constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

11 operator() has effects equivalent to:
return !ranges::equal_to<>{}(std::forward<T>(t), std::forward<U>(u));

5

https://wg21.link/concepts.equality

template<> struct greater<void> {
template<class T, class U>

requires StrictTotallyOrderedWith<T, U> || BUILTIN_PTR_CMP(U, <, T)
constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

12 operator() has effects equivalent to:
return ranges::less<>{}(std::forward<U>(u), std::forward<T>(t));

template<> struct less<void> {
template<class T, class U>

requires StrictTotallyOrderedWith<T, U> || BUILTIN_PTR_CMP(T, <, U)
constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

13 Expects: If the expression std::forward<T>(t) < std::forward<U>(u) results in a call to a built-in
operator < comparing pointers of type P, the conversion sequences from both T and U to P shall be
equality-preserving ([concepts.equality]). For any expressions ET and EU such that decltype((ET)) is T
and decltype((EU)) is U, exactly one of ranges::less<>{}(ET, EU), ranges::less<>{}(EU, ET),
or ranges::equal_to<>{}(ET, EU) shall be true.

14 Effects:
—(14.1) If the expression std::forward<T>(t) < std::forward<U>(u) results in a call to a built-in

operator < comparing pointers of type P: returns true if (the converted value of) t precedes u in
the implementation-defined strict total order over pointers of type P and otherwise false.

—(14.2) Otherwise, equivalent to: return std::forward<T>(t) < std::forward<U>(u);

template<> struct greater_equal<void> {
template<class T, class U>

requires StrictTotallyOrderedWith<T, U> || BUILTIN_PTR_CMP(T, <, U)
constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

15 operator() has effects equivalent to:
return !ranges::less<>{}(std::forward<T>(t), std::forward<U>(u));

template<> struct less_equal<void> {
template<class T, class U>

requires StrictTotallyOrderedWith<T, U> || BUILTIN_PTR_CMP(U, <, T)
constexpr bool operator()(T&& t, U&& u) const;

using is_transparent = unspecified;
};

16 operator() has effects equivalent to:
return !ranges::less<>{}(std::forward<U>(u), std::forward<T>(t));

Strip <> from occurrences of ranges::equal_to<>, ranges::less<>, etc. in: [defns.projection], [itera-
tor.synopsis], [commonalgoreq.general]/2, [commonalgoreq.mergeable], [commonalgoreq.sortable], [range.syn],
[range.adaptors.split_view], [algorithm.syn], [alg.find], [alg.find.end], [alg.find.first.of], [alg.adjacent.find],
[alg.count], [alg.mismatch], [alg.equal], [alg.is_permutation], [alg.search], [alg.replace], [alg.remove], [alg.unique],
[sort], [stable.sort], [partial.sort], [partial.sort.copy], [is.sorted], [alg.nth.element], [lower.bound], [upper.bound],
[equal.range], [binary.search], [alg.merge], [includes], [set.union], [set.intersection], [set.difference], [set.symmetr-
ic.difference], [push.heap], [pop.heap], [make.heap], [sort.heap], [is.heap], [alg.min.max], [alg.lex.comparison],

6

https://wg21.link/concepts.equality

and [alg.permutation.generators].

5 Reversing a reverse_view [weiv_esrever]
view::reverse in P0896 is a range adaptor that produces a reverse_view which presents the elements of the
underlying range in reverse order - from back to front. reverse_view does so via the expedient mechanism of
adapting the underlying view’s iterators with std::reverse_iterator. Reversing a reverse_view produces
a view of the elements of the original range in their original order. While this behavior is correct, it is likely
to exhibit poor performance.
We propose that the effect of view::reverse(r) when r is an instance of reverse_view should be to simply
return the underlying view directly. This behavior is both simple to specify and efficient to implement.
Similarly, reversing a subrange whose iterator and sentinel are reverse_iterators can be made more
efficient by yielding a subrange of "unwrapped" iterators. Note that in this case we should take care to
preserve any stored size information in the original subrange, since the size of the unwrapped base range is
the same.

5.1 Technical specifications [sdrow.weiv_esrever]
— Modify the specification of view::reverse in [range.reverse.adaptor] as follows:

1 The name view::reverse denotes a range adaptor object ([range.adaptor.object]). For some
subexpression E, the expression view::reverse(E) is expression-equivalent to: reverse_view{E}.

—1 If the type of E is a cv-qualified specialization of reverse_view, E.base().
—1 Otherwise, if the type of E is cv-qualified

subrange<reverse_iterator<I>, reverse_iterator<I>, K>

for some iterator type I and value K of subrange_kind,
subrange<I, I, K>(E.end().base(), E.begin().base(), E.size())

if K is subrange_kind::sized and
subrange<I, I, K>(E.end().base(), E.begin().base())

otherwise, except that in either case E is evaluated only once.
—1 Otherwise, reverse_view{E}.

6 Use cases left dangling [dangle]
What does this program fragment do in P0896?

std::vector<int> f();
o = std::ranges::copy(f(), o).out;

how about this one:
std::ranges::copy(f(), std::ostream_iterator<int>{std::cout});

The correct answer is, “These fragments are ill-formed because the iterator into the input range that
ranges::copy returns would dangle - despite that the program fragment ignores that value - because LEWG
asked us to remove the dangling wrapper and make such calls ill-formed.”
In the Ranges TS / revision one of P0896 an algorithm that returns an iterator into a range that was passed
as an rvalue argument first wraps that iterator with the dangling wrapper template. A caller must retrieve
the iterator value from the wrapper by calling a member function, opting in to potentially dangerous behavior
explicitly. The use of dangling here makes it impossible for a user to inadvertently use an iterator that
dangles.
In practice, the majority of range-v3 users in an extremely rigorous poll of the #ranges Slack channel (i.e.,
the author and two people who responded) never extract the value from a dangling wrapper. We prefer to

7

https://wg21.link/range.reverse.adaptor
https://wg21.link/range.adaptor.object

always pass lvalue ranges to algorithms when we plan to use the returned iterator, and use dangling only as
a tool to help us avoid inadvertent use of potentially dangling iterators. Unfortunately, P0896 makes calls
that would have used dangling in the TS design ill-formed which forces passing ranges as lvalues even when
the dangling iterator value is not used.
We propose bringing back dangling in a limited capacity as a non-template tag type to be returned by calls
that would otherwise return a dangling iterator value. This change makes the program fragments above
well-formed, but without introducing the potentially unsafe behavior that LEWG found objectionable in the
prior dangling design: there’s no stored iterator value to retrieve.

6.1 Technical specifications [dangle.words]
Modify the <ranges> synopsis in [ranges.syn] as follows:

namespace std::ranges {
[...]

// [range.range], Range
template<class T>

using iterator_t = decltype(ranges::begin(declval<T&>()));

template<class T>
using sentinel_t = decltype(ranges::end(declval<T&>()));

template<fowarding-range R>
using safe_iterator_t = iterator_t<R>;

template<class T>
concept Range = see below;

[...]

template<Iterator I, Sentinel<I> S = I, subrange_kind K = see below>
requires (K == subrange_kind::sized || !SizedSentinel<S, I>)

class subrange;

// [dangling], dangling iterator handling
struct dangling;

template<Range R>
using safe_iterator_t =

conditional_t<forwarding-range<R>, iterator_t<R>, dangling>;

template<forwarding-range Range R>
using safe_subrange_t =

conditional_t<forwarding-range <R>, subrange<iterator_t<R>>, dangling>;

// [range.all], all view
namespace view { inline constexpr unspecified all = unspecified; }

[...]
}

Add a new subclause to [range.utility], following [range.subrange]:

23.6.4 Dangling iterator handling [dangling]
1 The tag type dangling is used together with the template aliases safe_iterator_t and safe_-

subrange_t to indicate that an algorithm that typically returns an iterator into or subrange of
a Range argument does not return an iterator or subrange which could potentially dangle for a
particular rvalue Range argument which does not model forwarding-range ([range.range]).

namespace std {
struct dangling {

constexpr dangling() noexcept = default;

8

https://wg21.link/ranges.syn
https://wg21.link/range.range
https://wg21.link/dangling
https://wg21.link/range.all
https://wg21.link/range.utility
https://wg21.link/range.subrange
https://wg21.link/range.range

template<class... Args>
constexpr dangling(Args&&...) noexcept { }

};
}

2 [Example:
vector<int> f();
auto result1 = ranges::find(f(), 42); // #1
static_assert(Same<decltype(result1), dangling>);
auto vec = f();
auto result2 = ranges::find(vec, 42); // #2
static_assert(Same<decltype(result2), vector<int>::iterator>);
auto result3 = ranges::find(subrange{vec}, 42); // #3
static_assert(Same<decltype(result3), vector<int>::iterator>);

The call to ranges::find at #1 returns dangling since f() is an rvalue vector; the vector
could potentially be destroyed before a returned iterator is dereferenced. However, the calls at
#2 and #3 both return iterators since the lvalue vec and specializations of subrange model
forwarding-range. —end example]

Bibliography
[1] Eric Niebler. P0789r3: Range adaptors and utilities, 05 2018. http://www.open-std.org/jtc1/sc22/

wg21/docs/papers/2018/p0789r3.pdf.

[2] Eric Niebler, Casey Carter, and Christopher Di Bella. P0896R4: The one ranges proposal, 11 2018.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0896r4.pdf.

9

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0789r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0789r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0896r4.pdf

	1 Abstract
	1.1 Revision History
	1.1.1 Revision 1
	1.1.2 Revision 0

	2 Deprecate move_iterator::operator->
	2.1 Technical Specifications

	3 ref-view => ref_view
	3.1 Technical Specifications

	4 Comparison function object untemplates
	4.1 Technical specifications

	5 Reversing a reverse_view
	5.1 Technical specifications

	6 Use cases left dangling
	6.1 Technical specifications
	23.6.4 Dangling iterator handling

	Bibliography

