
P1083r2 | Move resource_adaptor from Library TS to the C++
WP

Pablo Halpern phalpern@halpernwightsoftware.com

2018-11-13 | Target audience: LWG

1 Abstract
When the polymorphic allocator infrastructure was moved from the Library Fundamentals TS to the C++17
working draft, pmr::resource_adaptor was left behind. The decision not to move pmr::resource_adaptor
was deliberately conservative, but the absence of resource_adaptor in the standard is a hole that must be
plugged for a smooth transition to the ubiquitous use of polymorphic_allocator, as proposed in P0339
and P0987. This paper proposes that pmr::resource_adaptor be moved from the LFTS and added to the
C++20 working draft.

2 History
2.1 Changes from R1 to R2 (in San Diego)

• Paper was forwarded from LEWG to LWG on Tuesday, 2018-10-06
• Copied the formal wording from the LFTS directly into this paper
• Minor wording changes as per initial LWG review
• Rebased to the October 2018 draft of the C++ WP

2.2 Changes from R0 to R1 (pre-San Diego)
• Added a note for LWG to consider clarifying the alignment requirements for resource_adaptor<A>::do_allocate().
• Changed rebind type from char to byte.
• Rebased to July 2018 draft of the C++ WP.

3 Motivation
It is expected that more and more classes, especially those that would not otherwise be templates, will
use pmr::polymorphic_allocator<byte> to allocate memory. In order to pass an allocator to one of
these classes, the allocator must either already be a polymorphic allocator, or must be adapted from a
non-polymorphic allocator. The process of adaptation is facilitated by pmr::resource_adaptor, which is a
simple class template, has been in the LFTS for a long time, and has been fully implemented. It is therefore
a low-risk, high-benefit component to add to the C++ WP.

4 Impact on the standard
pmr::resource_adaptor is a pure library extension requiring no changes to the core language nor to any
existing classes in the standard library.

1

mailto:phalpern@halpernwightsoftware.com
http://wg21.link/p0339
http://wg21.link/p0987


5 Formal Wording
This proposal is based on the Library Fundamentals TS v2, N4617 and the October 2018 draft of the C++
WP, N4778.

In section 19.12.1 [mem.res.syn] of the C++ WP, add the following declaration immediately after the
declaration of operator!=(const polymorphic_allocator...):

// 19.12.x resource adaptor
// The name resource_adaptor_imp is for exposition only.
template <class Allocator> class resource_adaptor_imp;

template <class Allocator>
using resource_adaptor = resource_adaptor_imp<

typename allocator_traits<Allocator>::template rebind_alloc<byte>>;

Insert between sections 19.12.3 [mem.poly.allocator.class] and 19.12.4 [mem.res.global] of the C++ WP, the
following section, taken from section 8.7 of the LFTS v2:

19.12.x template alias resource_adaptor [memory.resource.adaptor]

19.12.x.1 resource_adaptor [memory.resource.adaptor.overview]

An instance of resource_adaptor<Allocator> is an adaptor that wraps a memory_resource interface
around Allocator. To ensure that resource_adaptor<X<T>> and resource_adaptor<X<U>> are the same
type for any allocator template X and types T and U, resource_adaptor<Allocator> is rendered as an alias
to a class template such that Allocator is rebound to a byte value type in every specialization of the class
template. The requirements on this class template are defined below. The name resource_adaptor_imp is for
exposition only and is not normative, but the definitions of the members of that class, whatever its name,
are normative. In addition to the Cpp17Allocator requirements (§15.5.3.5), the Allocator parameter to
resource_adaptor shall meet the following additional requirements:

• typename allocator_traits<Allocator>::pointer shall be identical to
typename allocator_traits<Allocator>::value_type*.

• typename allocator_traits<Allocator>::const_pointer shall be identical to typename
allocator_traits<Allocator>::value_type const*.

• typename allocator_traits<Allocator>::void_pointer shall be identical to void*.

• typename allocator_traits<Allocator>::const_void_pointer shall be identical to void const*.

// The name resource_adaptor_imp is for exposition only.
template <class Allocator>
class resource_adaptor_imp : public memory_resource {

Allocator m_alloc; // for exposition only

public:
using allocator_type = Allocator;

resource_adaptor_imp() = default;
resource_adaptor_imp(const resource_adaptor_imp&) = default;
resource_adaptor_imp(resource_adaptor_imp&&) = default;

explicit resource_adaptor_imp(const Allocator& a2);
explicit resource_adaptor_imp(Allocator&& a2);

resource_adaptor_imp& operator=(const resource_adaptor_imp&) = default;

allocator_type get_allocator() const { return m_alloc; }

P1083r2 2 Pablo Halpern

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/n4617.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2018/n4778.pdf


protected:
void* do_allocate(size_t bytes, size_t alignment) override;
void do_deallocate(void* p, size_t bytes, size_t alignment) override;
bool do_is_equal(const memory_resource& other) const noexcept override;

};

19.12.x.2 resource_adaptor_imp constructors [memory.resource.adaptor.ctor]

explicit resource_adaptor_imp(const Allocator& a2);

Effects: Initializes m_alloc with a2.

explicit resource_adaptor_imp(Allocator&& a2);

Effects: Initializes m_alloc with std::move(a2).

19.12.x.3 resource_adaptor_imp member functions [memory.resource.adaptor.mem]

void* do_allocate(size_t bytes, size_t alignment);

Expects: alignment shall be a power of two.

Returns: a pointer to allocated storage obtained by calling the allocate member function on
a suitably rebound copy of m_alloc such that the expected size and alignment of the allocated
memory are at least bytes and alignment, respectively. If the rebound Allocator supports over-
aligned storage, then resource_adaptor<Allocator> should also support over-aligned storage.

Throws: nothing unless the underlying allocator throws.

void do_deallocate(void* p, size_t bytes, size_t alignment);

Expects: p shall have been returned from a prior call to allocate(bytes, alignment) on a
memory resource equal to *this, and the storage at p shall not yet have been deallocated.

Effects: Returns memory to the allocator using m_alloc.deallocate.

bool do_is_equal(const memory_resource& other) const noexcept;

Let p be dynamic_cast<const resource_adaptor_imp*>(&other).

Returns: false if p is null; otherwise the value of m_alloc == p->m_alloc.

6 References
N4778: Working Draft, Standard for Programming Language C++, Richard Smith, editor, 2018-10-08.

N4617: Programming Languages - C++ Extensions for Library Fundamentals, Version 2, 2016-11-28.

P0339: polymorphic_allocator<> as a vocabulary type, Pablo Halpern, 2018-04-02.

P0987: polymorphic_allocator instead of type-erasure, Pablo Halpern, 2018-04-02.

P1083r2 3 Pablo Halpern

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2018/n4778.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/n4617.pdf
http://wg21.link/p0339
http://wg21.link/p0987

	Abstract
	History
	Changes from R1 to R2 (in San Diego)
	Changes from R0 to R1 (pre-San Diego)

	Motivation
	Impact on the standard
	Formal Wording
	References

