Standard Library Specification in a Concepts and Contracts World

Document #: WG21 PO788R1

Date: 2018-02-03

Project: JTC1.22.32 Programming Language C++

Audience: LWG

Reply to: Walter E. Brown <webrown.cpp@gmail .com>
Contents
1 Introduction ... ... .. ... .. 1 6 Addendum .............. 6
2 Discussion .. ............ 2 7 Acknowledgments. . . . .. .. .. 6
3 Proposed principles and practices 2 8 Bibliography . . ... ... ... .. 6
4 Proposed wording . . . . ... ... 4 9 Document history . . . . . ... .. 6
5 Open questions ... ...... .. 5

Abstract

This paper proposes principles and practices for the Standard Library to follow in adapting its
specification techniques to forthcoming significant new core language features.

It is easier to change the specification to fit the program than vice versa.
— ALAN PERLIS

A specification that will not fit on one page of 8.5 x 11 inch paper cannot be understood.
— MARK ARDIS

Is the word “spec” short for specification, or for speculation?
— ANONYMOUS

1 Introduction

Concepts [N4674] and Modules [N4681] are major core language features that seem likely candi-
dates for C++20.! Two recent LEWG papers have begun to explore possible adjustments to the
C++ Standard Library to adapt to such a future:

e [PO411R0] proposes adjustments to Standard Library specifications taking into account “the
meaning of a requires-expression in the Concepts TS.”
¢ [PO581RO0] proposes a starting point for Modules’ future impact on the Standard Library.

In addition, the Contracts proposal [P0542R1] seems also likely to make at least some near-term
progress; we should therefore consider its potential Library impact, too.

Of these three features (Concepts, Modules, and Contracts), we believe that Modules will have
principally an organizational impact. We expect future Library headers’ synopses, for example,
to show the influence of Modules. However, unlike Concepts and Contracts, we do not envision

Copyright © 2017, 2018 by Walter E. Brown. All rights reserved.
1See [PO6O6RO], for example.


mailto:webrown.cpp@gmail.com

2 PO788R1: Standard Library Specification in a Concepts and Contracts World

that Modules will affect the specification of individual Library components. This paper will
therefore focus on the possible future impact of Concepts and Contracts on Library components’
specifications.

2 Discussion

Here are the premises of [P0O411RO0]’s “conceptually simple” proposal:

I propose separate categories for requirements which produce a compile-time
diagnostic when violated and for those which result in undefined behaviour when
violated. ...

In keeping with the meaning of a requires-expression in the Concepts TS, I propose
that the Requires: element be used for requirements on types that can be statically-
enforced, and a new Preconditions: element be used for requirements that must be
met to avoid undefined behaviour. ...

Every Requires: that naturally produces a diagnostic anyway should stay as a
Requires: element. This shouldn’t require implementations to change, and simply
standardizes existing practice. All other Requires: should be changed to Precondi-
tions:, meaning that violations result in undefined behaviour.

In many cases it’s obvious whether a Requires: element should be converted to
Preconditions: but some cases are less obvious. ...

Some Requires: paragraphs contain a mix of requirements and preconditions, so
need to be split into two paragraphs.

Discussion in Kona? pointed out that current Library specifications impose several kinds of
requirements and preconditions, often paired with specific consequences in case of failure. The
most common consequences are:

e undefined behavior,
e an ill-formed program, and
e non-participation in overload resolution.

Each could benefit from more precise handling, although “it involves a lot of changes to the
specification of the library.”

3 Proposed principles and practices

I. Let’s not recycle a Requires: element to mean something other than what it means today.

a) Let’s instead adopt new elements, described below, to specify the Library requirements
that are (or that should have been) specified via our current Requires: elements.
[Requirements can be categorized according to their consequences when not satisified:

e undefined (run-time) behavior,

e (compile-time) diagnostic required, and

¢ no (compile-time) diagnostic plus non-viability for overload resolution.
Commingling these in a single element seems confusing at best.]

b) Let’s make it a goal, over time, to eliminate all Requires: elements from our Library
specifications, preferring our new elements instead.

c) Let’s deprecate, as an intermediate step, the use of Requires: elements while we go about
systematically replacing all its Library uses.

[Once we've completed such replacement, there is no further use to document this
element; its specification should then be excised.]

2See http://wiki.edg.com/bin/view/Wg21kona2017/P0411.


http://wiki.edg.com/bin/view/Wg21kona2017/P0411

PO788R1: Standard Library Specification in a Concepts and Contracts World 3

II. Let’s introduce a new Constraints: element.

a)

b)

c)

Let’s use this Constraints: element to specify the compile-time circumstances that must
be satisfied in order that the corresponding Library component will be compiled.

[In a sense, this is similar to the conditional inclusion introduced by a preprocessing #if
directive: “Each directive’s condition is checked in order. If it evaluates to false (zero),
the group that it controls is skipped ...” ([cpp.cond]/12).]

Let’'s ensure that unsatisfied Constraints: not produce any diagnostic in and of them-
selves.

[This obviates the need for specification wording such as “shall not participate in overload
resolution.” Note that a consequential diagnostic may still result: for example, overload
resolution may find no viable candidates due to unsatisfied constraints and/or other
factors.]

Let’s introduce a new Diagnostics: element to specify the compile-time circumstances
under which, when unsatisfied, an implementation must produce a diagnostic.

[Such a diagnostic can be emitted, for example, via a static_assert in the body of the
corresponding Library component. This element obviates the need for any “is ill-formed”
specifications.]

ITI. Let’s introduce a new Expects: element.

a)

b)

Let’s use this Expects: element to specify the circumstances that must be satisfied to
avoid undefined behavior when the corresponding Library component is invoked.

[Industry-wide, such requirements have come to be known as preconditions, but the
Contracts proposals [PO542R1] seem to have chosen “expects” as their preferred term of
art; it seems better to have a single term and use it consistently.]

Let’s introduce Ensures: as a new name for the Postconditions: element, specifying the
observable results upon successful return from the corresponding Library component

[The Contracts proposals [P0O542R1] seem to have preferred the term “ensures” as their
chosen term of art over the traditional “postcondition”; we propose it here for consistency
and symmetry.]

IV. Let’s avoid any specification that demands any particular technology by which implementa-
tions must comply with Library specifications.

a)

b)

c)

d)

Let’s permit an implementation to use a requires-clause, an enable_if, a constexpr if, or
any other technology or combination of technologies to meet Constraints: specifications.

Let’s permit an implementation to use static_assert and/or any other technologies to
meet Diagnostics: specifications.

Let’s permit an implementation to use Contracts attributes [PO542R1] and/or any other
technologies to meet Expects: and Ensures: specifications.

Let’s consider user code that relies on any specific technology on the part of an imple-
mentation to be ill-formed, with no diagnostic required.



4 P0788R1: Standard Library Specification in a Concepts and Contracts World

4 Proposed wording?

4.1 Amend [structure.specifications]/3 as shown.

3 Descriptions of function semantics contain the following elements (as appropriate):
[Footnote: To save space, itemselements that do not apply to a function are omitted. For example, if a function does not
specify any further preconditions, there will be no Requires: paragraph.]

3.1— Requires: the preconditions for calling the function.

[ Note: The use of this element is deprecated. — end note]

3.2 — Constraints: the conditions for the function’s participation in overload resolution
([over.match]).

[ Note: Failure to meet such a condition results in the function’s silent non-viability; i.e., no
corresponding diagnostic is issued by the implementation. — end note]

[ Example: An implementation may express such a condition via a constraint-expression
([temp.constr.decl]). — end example]

3.3 — Diagnostics: the conditions that require an implementation to issue one or more diagnostic
messages [defns.diagnostic].

[ Example: An implementation may express such a condition via the constant-expression
in a static_assert-declaration ([dcl.dcl]). If the diagostic is to be emitted only after the
function has been selected by overload resolution, an implementation may express such
a condition via a constraint-expression ([temp.constr.decl]) and also define the function as
deleted. — end example]

3.4 — Expects: the conditions (sometimes termed preconditions) that the function may assume
to hold whenever it is called.

[ Example: An implementation may express such a condition via an implementation-defined
attribute such as [ [expects]]. — end example]

3.25 — Effects: the actions performed by the function.
3.36 — Synchronization: the synchronization operations (6.8.2) applicable to the function.

3.47 — PesteonditionsEnsures: the conditions (sometimes termed observable results or post-
conditions) established by the function.

3.58 — Returns: a description of the value(s) returned by the function.

3.69 — Throws: any exceptions thrown by the function, and the conditions that would cause
the exception.

3.710 — Complexity: the time and/or space complexity of the function.
3.811 — Remarks: additional semantic constraints on the function.

3.912 — Error conditions: the error conditions for error codes reported by the function.

3All proposed additions and deletiens are relative to the post-Albuquerque Working Draft [N4713]. Editorial notes are
displayed against a gray background.



PO788R1: Standard Library Specification in a Concepts and Contracts World 5

4.2 Amend [structure.specifications]/4 as shown.

4 Whenever the Effects: element specifies that the semantics of some function F are Equiv-
alent to some code sequence, then the various elements are interpreted as follows. If F's
semantics specifies a Requires: element, then that requirement is logically imposed prior to
the equivalent-to semantics. Next, the semantics of the code sequence are determined by the
RequiresConstraints:, Diagnostics:, Expects:, Effects:, Synchronization:, PesteonditionsEnsures:,
Returns:, Throws:, Complexity:, Remarks:, and Error conditions: specified for the function invo-
cations contained in the code sequence. The value returned from F is specified by F’'s Returns:
element, or if F has no Returns: element, a non-void return from F is specified by the return state-
ments in the code sequence. If F’'s semantics contains a Throws:, Postconditions:, or Complexity:
element, then that supersedes any occurrences of that element in the code sequence.

4.3 Amend [res.on.required]/1 as shown.

1 Violation of theany preconditions specified in a function’s ReguiresExpects: paragraphelement
results in undefined behavior unless—thefunetion’s-Throws: paragraph-speeifiesthrowingan

exeeption-when-the preconditionis—vielated.
5 Open questions

5.1 Implementation limits

Note that [support.start.term]/7,11 make use of an Implementation limits: element. While such
a term of art is defined in [defns.impl.limits], it is unclear whether that is sufficient to allow its
use as an Implementation limits: specification element. If not, we should provide for this element
among those in [structure.specifications]/3-4.

5.2 constexpr-ness
Casey Carter has proposed:*

. another specification element “Constant” for specifying the conditions under which
a call to the function being specified is required to be a constant expression (or, for
constructors, the conditions under which the full-expression of an initializer that
invokes the constructor must be a constant initializer). It would be nice to finally
clean up the “is a constexpr function” mess that is LWG 2289 [constexpr guarantees
of defaulted functions still insufficient] and LWG 2833 [Library needs to specify what it
means when it declares a _function constexpr].

In addition to those Carter cited above, the following issues may also be relevant to his proposal:

e LWG 2154 [What exactly does compile-time complexity imply?],

e LWG 2491 [std: : less<T=> in constant expression],

e LWG 2829 [LWG 2740 leaves behind vacuous words], and

e LWG 2892 [Relax the prohibition on libraries adding constexpr].

It does appear that the Standard Library would benefit from additional clarity re constexpr
specifications. Would a Constant: element, such as Carter proposes, be a viable approach? If so,
how should such an element be defined?

4Casey Carter: “Re: Library specifications of the future kind,” personal correspondence, 2017-10-05. Augmented
with issue titles and links.


https://wg21.link/lwg2289
https://wg21.link/lwg2833
https://wg21.link/lwg2154
https://wg21.link/lwg2491
https://wg21.link/lwg2829
https://wg21.link/lwg2892

6 PO788R1: Standard Library Specification in a Concepts and Contracts World

5.3 Next steps

If this paper is favorably received, how should we proceed to implement its recommendations?
Adopting the Proposed Wording is an easy first step, but a careful audit of the entirety of the
Standard Library’s specifications seems called for. While an ad hoc approach is possible, a more
systematic plan seems a better option.

6 Addendum

This paper received strong endorsement from LEWG (17-7-2-0-0) following discussion in Albu-
querque. It is being forwarded to LWG with corrections for minor typos and broken links.

7 Acknowledgments

Many thanks to Jonathan Wakely, Casey Carter, Nicolai M. Josuttis, and the other readers of
early drafts of this paper for their thoughtful comments.

8 Bibliography

[N4674] Andrew Sutton: ‘Working Draft, C++ Extensions for Concepts.” ISO/IEC JTC1/SC22/WG21
document N4674 (pre-Toronto mailing), 2017-06-19. http://wg21.link/n4674.

[N4681] Gabriel Dos Reis: “Working Draft, Extensions to C++ for Modules.” ISO/IEC JTC1/SC22/WG21
document N4681 (post-Toronto mailing), 2017-07-14. http://wg21.link/n4681.

[N4713] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4713 (post-Albuquerque mailing), 2017-11-27. http://wg21.link/
n4713.

[PO411R0O] Jonathan Wakely: “Separating Library Requirements and Preconditions.” ISO/IEC JTC1/SC22/
WG21 document PO411RO (post-Oulu mailing), 2015-07-07. http://wg21.link/p0411r0.

[PO542R1] Gabriel Dos Reis, J. Daniel Garcia, etal.: “Support for contract based programming in C++.”
ISO/IEC JTC1/SC22/WG21 document PO542R1 (pre-Toronto mailing), 2017-06-16. http://
wg21.link/p0542r1.

[PO581R0] Gabriel Dos Reis, Billy O’'Neal, Stephan T. Lavavej, and Jonathan Wakely: “Standard Library
Modules.” ISO/IEC JTC1/SC22/WG21 document PO581RO (pre-Kona mailing), 2017-02-06.
http://wg21.link/p0581r0.

[PO60O6RO] Gabriel Dos Reis: “Concepts Are Ready.” ISO/IEC JTC1/SC22/WG21 document PO606RO (post-
Kona mailing), 2017-02-25. http://wg21.link/p0606r0.

9 Document history

Rev. Date Changes
0] 2017-10-10 e Published as PO788R0, pre-Albuquerque, alas with a 2019(!) date.
1 2018-02-03 e Fixed typos and broken links. e Tweaked §4 per the post-Albuquerque Working

Draft. e Published as PO788R1, pre-Jacksonville.


http://wg21.link/n4674
http://wg21.link/n4681
http://wg21.link/n4713
http://wg21.link/n4713
http://wg21.link/p0411r0
http://wg21.link/p0542r1
http://wg21.link/p0542r1
http://wg21.link/p0581r0
http://wg21.link/p0606r0

	Title
	Contents
	Abstract
	1 Introduction
	2 Discussion
	3 Proposed principles and practices
	4 Proposed wording
	5 Open questions
	6 Addendum
	7 Acknowledgments
	8 Bibliography
	9 Document history

