
std::function move constructor
should be noexcept

Document number: P0771R1

Date: 2018-10-07

Project: Programming Language C++, Library Working Group

Reply-to: Nevin “☺” Liber, nevin@cplusplusguy.com

 Pablo Halpern, phalpern@halpernwightsoftware.com

Table of Contents

Introduction ... 1

Changes from revision R0 to R1 .. 1

Motivation and Scope .. 2

Impact on the Standard .. 2

Design Decisions ... 2

Technical Specifications ... 2

Acknowledgements .. 3

References ... 3

Introduction
The move constructor for std::function should be noexcept.

Changes from revision R0 to R1
The noexcept move-assignment operator was removed from this proposal because it is

inconsistent with std::experimental::function as described in the Library

Fundamentals TS (N4617), both as-is and as modified by P0987. Specifically, if

allocators are added back to the std::function interface, the move-assignment

operator behaves as a copy assignment under certain conditions, making the noexcept

guarantee impossible.

In general, algorithmic efficiency can be improved if the move constructor and swap

functions are noexcept, as they would be with this proposal. A much smaller set of

algorithms benefit from a noexcept move-assignment operator. It would be possible to

mailto:nevin@cplusplusguy.com
mailto:phalpern@halpernwightsoftware.com
https://wg21.link/P0987

make the move-assignment operator conditionally noexcept, but it is not clear that it is

worth complicating the interface at this time.

Motivation and Scope
It is highly desirable to have noexcept move operations, especially when it does not

impose an undue burden on implementers or a high cost for users.

The other type-erased standard libraries any and shared_ptr already require this.

function is very similar to any in that both encourage the small object optimization.

It appears that function is required to use the small object optimization, at least to

hold a reference_wrapper object or function pointer [func.wrap.func.con#4], and

this proposal is compatible with that.

Both libstdc++ and libc++ already implement this.

Impact on the Standard
Impact on the standard is minor. The declarations for the move constructor for

function have to have noexcept added, and the throws clause for the move

constructor has to be deleted.

Design Decisions
A possible implementation technique: if the object either is too big to fit inside the small

object optimization space inside function or the object has a noexcept(false)

move constructor, then store it in the heap; otherwise, store it in the small object

optimization space.

Because default construction and swap are already noexcept, it is very likely that a

currently conforming implementation of function already does something like this

under the covers, even if they don’t declare their move constructor as noexcept.

Technical Specifications
Changes relative to N4762:

[func.wrap.func]

function() noexcept;

function(nullptr_t) noexcept;

function(const function&);

function(function&&) noexcept;

http://eel.is/c++draft/func.wrap.func.con#4
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4762.pdf

template<class F> function(F);

function& operator=(const function&);

function& operator=(function&&);

function& operator=(nullptr_t) noexcept;

template<class F> function& operator=(F&&);

template<class F> function& operator=(reference_wrapper<F>) noexcept;

~function();

[func.wrap.func.con]

function(function&& f) noexcept;

Postconditions: If !f, *this has no target; otherwise, the target of *this is equivalent to

the target of f before the construction, and f is in a valid state with an unspecified

value.

Throws: Shall not throw exceptions if f’s target is a specialization of

reference_wrapper or a function pointer. Otherwise, may throw bad_alloc or any

exception thrown by the copy or move constructor of the stored callable object.

Note: Implementations should avoid the use of dynamically allocated memory for

small callable objects, for example, where f’s target is an object holding only a pointer

or reference to an object and a member function pointer.

Acknowledgements
Special thanks to Ion Gaztañaga, Gabriel Dos Reis, Pete Becker, Bjarne Stroustrup,

Jonathan Wakely, and Stephan T. Lavavej for the discussion on this way back when;

Howard Hinnant for that as well as answering a theoretical design question on

function, Billy O’Neal for pointing out on an LEWG thread that the small object

optimization is required (as well as Stephan and Billy informing me how their version of

function is implemented), and Geoffrey Romer for recently implicitly reminding me

that no one had actually submitted a paper on this yet. Thank them or blame me for the

content of this paper.

References
N4762 - Working Draft, Standard for Programming Language C++, Richard

Smith, Editor 2018-07-07

N4617: Programming Languages - C++ Extensions for Library Fundamentals,

Version 2, 2016-11-28.

std_function.h, libstdc++ (gcc)

functional – libc++ (clang)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4762.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/n4617.pdf
https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/std_function.h
http://llvm.org/svn/llvm-project/libcxx/tags/libcpp-31/include/functional

