
October 2018 Function to mark unreachable code P0627R3

Page | 1

Title: Function to mark unreachable code

Document Number: P0627R3

Date: 2018-10-08

Project: ISO JTC1/SC22/WG21: Programming Language C++

Audience: WG21 – Library Evolution Working Group (LEWG)

Reply-to: Melissa Mears < >

1. Introduction

This proposal introduces a new standard library function, std::unreachable, for marking locations in

code execution as being known by the programmer to be unreachable.

2. Document History

2017-03-14 – Revision 0, first published release.

2017-06-12 – Revision 1:

• Removed “Open Questions” section, since these questions have been resolved.

• Updated references to the Standard to refer to the N4659 draft instead of N4618.

• Improved the proposed Standardese considerably on advice from Jens Maurer.

• Added a Qt-like example of how __assume could be simulated using [[unreachable]].

• Minor fixes throughout the document.

2017-07-15 – Revision 2:

• Added message parameter.

• Added notes about concerns from the EWG meeting.

2018-10-08 – Revision 3:

• Switched to being a function instead of an attribute.

• Added Toronto 2017 EWG straw poll information and retargeted for LEWG.

3. Motivation and Scope

Compilers cannot know every situation in which code may execute, thanks to the Halting Problem. There

will always exist programs in which a compiler cannot determine that a situation is impossible.

When the programmer knows that a situation is impossible, but it is not obvious to the compiler, it is

helpful to be able to tell the compiler to avoid runtime checking for a case that is impossible.

For example, a common situation is that a switch statement handles all possible situations, but it's not

obvious to the compiler. Given this example switch statement:

October 2018 Function to mark unreachable code P0627R3

Page | 2

void do_something(int number_that_is_only_0_1_2_or_3)

{

 switch (number_that_is_only_0_1_2_or_3)

 {

 case 0:

 case 2:

 handle_0_or_2();

 break;

 case 1:

 handle_1();

 break;

 case 3:

 handle_3();

 break;

 }

}

…a compiler might generate object code like this (using Intel-syntax x86-64 as an example):

cmp eax, 4

jae skip_switch

lea rcx, [jump_table]

jmp qword [rcx + rax*8]

If, however, we had a way to tell the compiler that no other value is possible, the compiler could omit the

first two instructions, the ones checking for a value that is not 0 1 2 or 3.

Another case in which it would be nice to tell a compiler that something cannot happen is with non-

obvious cases of a function never returning. An example from POSIX could be the following:

[[noreturn]] void kill_self()

{

 kill(getpid(), SIGKILL);

}

Such code cannot fail or return, but generally, a compiler will issue a warning that kill_self might

return despite its [[noreturn]] attribute.

2.1 Existing implementations

2.1.1 POSIX world

GCC, Clang and Intel C++ all support a directive function named __builtin_unreachable().

Calling this “function” tells these compilers that that location in the source code cannot be reached. Thus,

the do_something and kill_self functions from section 2 above would appear as follows:

October 2018 Function to mark unreachable code P0627R3

Page | 3

void do_something(int number_that_is_only_0_1_2_or_3)

{

 switch (number_that_is_only_0_1_2_or_3)

 {

 case 0:

 case 2:

 handle_0_or_2();

 break;

 case 1:

 handle_1();

 break;

 case 3:

 handle_3();

 break;

 default:

 __builtin_unreachable();

 }

}

[[noreturn]] void kill_self()

{

 kill(getpid(), SIGKILL);

 __builtin_unreachable();

}

2.1.2 Windows world

Microsoft Visual C++ doesn't have such a directive, but it has an alternative that can produce the same

effect. Visual C++ has __assume(E), which directs the compiler to assume that arbitrary Boolean

expression E is true when execution reaches that location.

If one uses the contradictory statement __assume(false), Visual C++ assumes that execution cannot

reach this point, much like the behavior of __builtin_unreachable().

2.1.3 Other implementations

In some implementations, it is possible to accomplish unreachability assumptions by intentionally causing

undefined behavior, such as intentionally dividing by zero in the unreachable case. However, the author

feels that that should not be encouraged. Instead, we’ll make something that directly is undefined

behavior in a standard manner.

October 2018 Function to mark unreachable code P0627R3

Page | 4

3. Design Decisions

3.1 Form of the directive

The major compilers all support a similar useful feature, and it would be nice to have a standard way.

The author sees the __assume(E) design (__assume(false)) and the similar Contract-Based

Programming proposal as undesirable for few reasons that are covered in the next section.

Additionally, the proposed std::unreachable() could easily be used to provide the functionality of

__assume, using something like this (the idea coming from Qt’s source code):

#define ASSUME(...) if (__VA_ARGS__); else std::unreachable()

An EWG straw poll at Toronto 2017 indicated that a function—say, std::unreachable()—would be

preferred to a new attribute [[unreachable]]. One reason brought up at EWG that suggested that a

library function is preferred is that it allows changing the internal implementation later.

3.2 Diagnostic string

EWG expressed in a straw poll the recommendation that std::unreachable take an optional message

parameter. This parameter would be used by implementations—and certain modes of implementations—

that trap in response to std::unreachable() executing, providing a runtime diagnostic message.

The author feels that this would be a useful addition, and has added it to the proposal.

3.2 Comparison with Contract-Based Programming proposal (P0380/P0542)

A proposal for adding contract-based programming to C++ is proposed by paper P0380 and formalized by

paper P0542. The contracts proposal turns out to be a superset of this proposal; the closest contracts

equivalent to this proposal’s std::unreachable() is [[assert axiom: false]].

[[assert: E]] means that the given expression E must be true at a certain point. The axiom

“checking level” means that no runtime checking is to be done. [[assert axiom: E]] is thus very

similar to the Visual C++ extension __assume(E).

The author believes that utilizing the contract-based programming proposal, or Visual C++’s __assume,

instead of a separate std::unreachable() is undesirable for the following reasons:

• The Contracts specification is incomplete, and it will be a while before it is ready.

• [[assert axiom: false]] doesn’t convey to programmers that that statement is unreachable

like std::unreachable() does. It looks like, and is, a logical contradiction, and so is

awkward to comprehend. std::unreachable() is more clear in its meaning.

October 2018 Function to mark unreachable code P0627R3

Page | 5

• The most problematic aspect the author sees is that the Contracts proposal does not state that the

effect of failing an [[assert axiom]] is undefined behavior. std::unreachable()

denoting undefined behavior at the point is a desirable feature (see next section).

• std::unreachable() can be implemented in terms of Contracts in the future if desired. Its

behavior could then be defined as a contract failure without breaking backward compatibility.

(Because the behavior would previously be undefined, programs would not expect anything.)

3.3 Definition

What is the best way to define the attribute's effect? The author feels that the best way is to make the

behavior of std::unreachable() be undefined. There are several reasons:

• std::unreachable() causing undefined behavior means that the Standard would not prescribe

any particular action, leaving open many possible implementation actions.

• Some compilers already associate being unreachable to undefined behavior. Clang’s

documentation states that __builtin_unreachable() “has completely undefined behavior”.

• Optimizing under the assumption that a statement is unreachable, and thus having unpredictable

behavior if the statement is in fact reachable, falls naturally under "undefined behavior".

• An alternative would be to issue a trap if std::unreachable() is executed. This could be

used in "debug builds", for example. Such a trap falls under "undefined behavior".

• Being undefined behavior implies what happens if a constexpr function calls

std::unreachable(): it's not a constant-expression, by (N4713) [expr.const]/2.6.

3.4 Concerns over proliferation of undefined behavior

A concern brought up at EWG was that this feature would result in further proliferation of undefined

behavior. The author acknowledges that this indeed introduces an additional case of undefined behavior,

but does not believe this to be a large problem.

In the author’s opinion, it is not undefined behavior itself that is the problem, but rather unexpected

undefined behavior. C++ will always have undefined behavior; this is unavoidable. Situations in which

undefined behavior occurs unexpectedly are problematic for programmers, because they often lead to

subtle bugs, or unexpected compiler optimizations. However, std::unreachable() is expected

undefined behavior: a programmer using it knows that undefined behavior will occur there and is making

a calculated risk in using it.

October 2018 Function to mark unreachable code P0627R3

Page | 6

4. Example Implementation

Compilers with magic for inducing undefined behavior would just use those.

Even without compiler magic, a compliant implementation is simple:

namespace std {

 [[noreturn]] inline void unreachable() { }

 [[noreturn]] inline void unreachable(const char *) { }

}

6. Impact on Existing Implementations

The major implementations already have support for this feature in a different form, so modifications to

implementations of the Standard Library to support std::unreachable() should be simple.

7. Proposed Wording

The proposed Standardese wording below is relative to N4713. All portions are additions.

Add a new prototype to the <utility> synopsis in 23.2.1 ([utility.syn]):

 23.2.1 Header <utility> synopsis [utility.syn]

 #include <initializer_list> // see 21.9.1

 namespace std {

 …

 // 23.2.X, unreachable

 [[noreturn]] inline void unreachable();

 [[noreturn]] inline void unreachable(const char *message);

 }

Add a new section to 23.2 ([utility]):

23.2.X Function unreachable [utility.unreachable]

[[noreturn]] inline void unreachable();

[[noreturn]] inline void unreachable(const char *message);

1 Requires: message, if present, is a null-terminated multibyte string.

2 Effects: The behavior of calling unreachable is undefined.

3 [Note: Implementations that turn unreachable into a trap should include the contents of

message, if present, in the diagnostic message generated by the trap. — end note]

October 2018 Function to mark unreachable code P0627R3

Page | 7

4 [Example:

int f(int x) {

 switch (x) {

 case 0:

 case 1:

 return x;

 default:

 std::unreachable("invalid value of x");

 }

}

int a = f(1); // OK; a has value 1

int b = f(3); // undefined behavior

— end example]

8. Feature-Testing Macro

For the purposes of SG10 SD-6, a new feature test macro could be added; one possibility is

__cpp_lib_unreachable.

9. EWG Straw Poll (Toronto 2017)

At Toronto 2017, the EWG straw poll voted to send this proposal with the optional message addition to

LEWG. SF=4, F=10, N=2, A=1, SA=1

Additionally, a straw poll asked whether to recommend to LEWG that this functionality be available

without a header. This aspect has not been incorporated above, because I do not know how the wording

would function. SF=2, F=7, N=8, A=1, SA=1

October 2018 Function to mark unreachable code P0627R3

Page | 8

10. References

• N4713 Working Draft, Standard for Programming Language C++:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf

• November 2015 std-proposals mailing list discussion thread started by Nicol Bolas:

https://groups.google.com/a/isocpp.org/forum/#!searchin/std-proposals/unreachable/std-

proposals/f1G45z3dMp0/04qGH9X0FQAJ

• “A Contract Design” proposal for defining contractual programming in C++:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0542r0.html

• GCC documentation on __builtin_unreachable:

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html#index-

_005f_005fbuiltin_005funreachable

• Clang documentation on __builtin_unreachable:

https://clang.llvm.org/docs/LanguageExtensions.html#builtin-unreachable

• Visual C++ documentation on __assume:

https://msdn.microsoft.com/en-us/library/1b3fsfxw.aspx

11. Acknowledgements

The author would like to recognize the contributions of the members of the std-proposals discussion

group on the subject: Nicol Bolas for starting the thread with the idea, Richard Smith for pointing out how

ignoring the attribute is a correct implementation, Thiago Macieira for noting other possible compiler

reactions, and Jens Maurer for improving the Standardese.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4713.pdf
https://groups.google.com/a/isocpp.org/forum/#!searchin/std-proposals/unreachable/std-proposals/f1G45z3dMp0/04qGH9X0FQAJ
https://groups.google.com/a/isocpp.org/forum/#!searchin/std-proposals/unreachable/std-proposals/f1G45z3dMp0/04qGH9X0FQAJ
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0542r0.html
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html#index-_005f_005fbuiltin_005funreachable
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html#index-_005f_005fbuiltin_005funreachable
https://clang.llvm.org/docs/LanguageExtensions.html#builtin-unreachable
https://msdn.microsoft.com/en-us/library/1b3fsfxw.aspx

