
p0753r1 - Manipulators for C++ Synchronized Buffered Ostream
(see p0053)

Peter Sommerlad, Pablo Halpern

2017-10-15

Document Number: p0753r1
Date: 2017-10-15
Project: Programming Language C++
Audience: LEWG (LWG to re-check the wording)

1 Introduction

Note that this version is identical to p0753r0 except for the typo in the paper number
in that version.

After Kona, Pablo asked me to add ostream manipulators for basic_osyncstream to allow users
of such streams to modify their flushing behavior, when those stream objects are only know via
ostream& down the call chain.

The wording for these manipulators was reviewed by LWG in Toronto (p0053r5), but their names
were never discussed in LEWG, therefore I followed Jeffrey’s suggestion to split them from p0053r6.
For more information see that paper.

1.1 Items to be discussed by LEWG

— Naming of the manipulators

— Should the manipulators be in header <osyncstream> instead of globally available in <ostream>
as are flush and endl? Putting them in <osyncstream> (only), will increase dependence
on basic_osyncstream, where basic_syncbuf would suffice for inline implementation of the
manipulators. That dependency could even be mitigated by non-inline implementations of the
manipulators (providing their instantiations for the supported character types as is done with
many other things in the iostream implementaions).

— re-check wording (done be LWG in Toronto, but minor adaptations were made, because of
LWG’s feedback. Pablo is OK with the edits)

— What should be the delivery vehicle for this feature: C++20 or the concurrency TS? I believe
both should be addressed when moved, like with p0053.

1



2 p0753r1 2017-10-15

2 Wording

This wording is relative to the current C++ working draft and refers to the specification in p0053r6.
It could be integrated into a Concurrency TS accordingly when p0053 gets adopted.

2.1 30.7.5.4 Standard basic_ostream manipulators [ostream.manip]
Add the following three manipulators.

template <class charT, class traits>
basic_ostream<charT, traits>& emit_on_flush(basic_ostream<charT, traits>& os);

1 Effects: If os.rdbuf() is a basic_osyncbuf<charT, traits, Allocator> pointer buf, calls
buf->set_emit_on_sync(true). Otherwise this manipulator has no effect. [Note: To work
around the issue that the Allocator template argument can not be deduced, implementations
can introduce an intermediate base class to basic_osyncbuf that takes care its emit_on_sync
flag. —end note ]

2 Returns: os.

template <class charT, class traits>
basic_ostream<charT, traits>& noemit_on_flush(basic_ostream<charT, traits>& os);

3 Effects: If os.rdbuf() is a basic_osyncbuf<charT, traits, Allocator> pointer buf, calls
buf->set_emit_on_sync(false). Otherwise this manipulator has no effect.

4 Returns: os.

template <class charT, class traits>
basic_ostream<charT, traits>& flush_emit(basic_ostream<charT, traits>& os);

5 Effects: flush(os). Further if os.rdbuf() is a basic_osyncbuf<charT, traits, Allocator>
pointer buf, calls buf->emit().

6 Returns: os.

2.2 Implementation
An example implementation is availabile on https://github.com/PeterSommerlad/SC22WG21_
Papers/tree/master/workspace/p0053_basic_osyncstreambuf

https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/p0053_basic_osyncstreambuf
https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/p0053_basic_osyncstreambuf

	1 Introduction
	1.1 Items to be discussed by LEWG

	2 Wording
	2.1 30.7.5.4 Standard basic_ostream manipulators [ostream.manip]
	2.2 Implementation


