
Document Number: P0731r0
Date: 2017-07-27
To: SC22/WG21 CWG/EWG
Reply to: Nathan Sidwell

nathan@acm.org
Re: Working Draft, Extensions to C ++ for Modules, n4681

Module Interface Imports
Nathan Sidwell

The current wording of n4681 does not reflect the original intent concerning imports. This paper
discusses the current wording and suggests edits to clarify the original design.

1 Background
The modules-ts states that module implementation units have visibility to all the non-internal-linkage
entities declared in the module’s interface unit. The specification is not clear on whether module
implementations units have visibility of all the non-internal-linkage entities made visible in the
interface unit. Three implementations of modules, in various states of completeness, all diverge in their
behaviour regarding module import transitivity. It is unknown whether this is due to incompleteness of
implementation, or ambiguity of specification or both.

2 Example
This example was provided by Boris Kolpakov and shows implementation divergence. It consists of
two modules and a user.

// module core interface
export module core;
export void f ();

// module extra interface
export module extra;
import core;
export void g ();

// module extra implementation
module extra;
#ifdef IMPL_IMPORT
import core;
#endif

mailto:nathan@acm.org

void g () {
 f (); // #1
}

// user
import extra;
#ifdef USER_IMPORT
import core;
#endif
int main () {
 f (); // #2
}

Here the end user imports module extra, which itself imports (but does not re-export) module core.

The three compilers tested all vary in whether they require explicit ‘import core;’ in the module

extra implementation TU and/or the user TU:

Compiler Version IMPL_IMPORT USER_IMPORT

G++ modules branch Not needed Needed

Clang 5.0.0-
svn305177-
1~exp1

Needed Needed

VC 19.11.25325 Not needed Not Needed

VC appears to be transitively importing core into the user’s TU and thus the call at #2 is resolved to the
function declared in core’s interface. Clang does not appear to be making the import visible within the
purview of module implementations and so requires an explicit import to resolve the call at #1. GCC is
not transitively importing core, but is making the import visible within module implementations.

3 Discussion
Three separate issues are raised:

3.1 User visibility
That VC makes module core’s exports visible in the user TU, without an explicit import is an
implementation bug, confirmed by GDR1. The proposal notes:

[dcl.module.export,7.7.3]/1 … [Note: A module interface unit (for a module M) containing
an import-declaration does not make the imported names transitively visible to translation
units importing the module M.]

1 Gaby dos Reis

As notes are non-normative, the note itself implies the non-transitivity is deducible. That can be
deduced due to absence of wording specifying that names introduced via an import-declaration within
the purview of a imported module interface are made visible to importers of that module.

Note this non-transitivity at the user-level is distinct from compiler implementation details that most
probably do require the complete graph of module interface units available in compiled form.

3.2 Implementation unit visibility
Whether a module implementation implicitly sees all the imports of its interface is not clear. The
proposal states:

[basic.scope.namespace,6.3.6]/1 … If the name X of a namespace member is declared in a
namespace-definition of a namespace N in the module interface unit of a module M, the
potential scope of X includes the namespace-definitions of N in every module unit of M
and, if the name X is exported, in every translation unit that imports M.

and

[dcl.module.interface,10.7.1]/1 … All entities with linkage other than internal linkage
declared in a module interface unit of a module M are visible to all module units of M. …

However, here we are considering a module-import-declaration, which makes sets of names visible in
arbitrary namespace partitions. It does not itself declare any new entities:

[dcl.module.import,10.7.2]/1 … [Note: The entities are not redeclared in the translation
unit containing the module-import-declaration. — end note]

 Other text clarifies that an exported module-import-declaration makes names visible in imports:

[dcl.module.export,10.7.3]/1 An exported module-import-declaration nominating a module
M’ in the purview of a module M makes all exported names of M’ visible to any translation
unit importing M.

However, a module implementation does not import, in the normal sense, its own interface:

[dcl.module.import,10.7.2]/2 A module M1 has a dependency on a module M2 if any
module unit of M1 contains a module-import-declaration nominating M2. A module shall
not have a dependency on itself.

There does not appear to be text saying that a module implementation sees the imports of its interface.

However, such visibility was intended in the original design. An implementation unit has visibility to
all the module-linkage declarations of the interface unit. It is a natural extension of that rule for
implementaion units to have visibility of imported entities.

3.3 Transitivity of module-export-declaration
There does not appear to be text saying that an exported module-import-declaration transitively makes
names visible via an indirect exported module-import-declaration to final importers:

[dcl.module.export,10.7.3]/1 … [Note: A module interface unit (for a module M)
containing an module-import-declaration does not make the imported names transitively
visible to translation units importing the module M. – end note]

The intent of the design is that non-exported module-import-declarations are not made transitively
visible.

3.4 Visibility of interface’s global module partition
Module implementation units do not have visibility of entities declared in the global module portion of
their interface unit’s translation unit. This suggests they also do not have visibility of names made
visible via import declarations within that portion. It is not explicitly specified what happens if the
interface re-imports a module within its purview. Presumably the names are now visible within the
interface’s global module fragment and within its purview. Thus imports within a single translation unit
might not be idempotent with regards to their cross-module unit behaviour.

4 Proposal
I think an ambiguity arises from the specification that it is declarations that make the declared entities
visible (and possibly exported), but that imports do not (re)declare entities. Further, editorial changes
since the original proposal have added unintended ambiguity and behaviour.

The module proposal’s original intent is that:

• A module implementation has visibility to all the non-internal linkage names that are visible in

the purview of its interface.

• A module implementation does not have visibility of names made visible in the global module

fragment of its interface.

• An exported module-import-declaration naming M1 in module M2 makes the names made

visible by module M1 visible to importers of module M2 as-if M1 were explicitly imported by
any importers of M2.

The following wording edits define and clarify these semantics.

4.1 Changes to dcl.module.interface [10.7.1]
Amend the note in [dcl.module.interface]/1 to:

• State that implementation units see all names made visible in the interface.
• Note that implementation units do not see the interface’s global module fragment:

… The names of all entities in the interface of a module are visible to any translation unit
importing that module. The entity and the declaration introduced by an export-declaration
are said to be exported. All entities Every name of an entity with linkage other than
internal linkage declaredmade visible in the purview of the module interface unit of a
module M areis visible in the purview of all module implementation units of M. The entity
and the declaration introduced by an export-declaration are said to be exported.[Note:
Names of entities made visible in the global module of an interface unit translation
unit are not visible to module implementation units. – end note]

The second and third sentences of the quoted fragment are swapped, as the now-second sentence is
related to the first sentence. The now-third sentence discusses visibility, not declarations. The new note
makes it clear that the global module is not made visible to implementation units.

4.2 Changes to dcl.module.export [10.7.3]
Amend [dcl.module.export,10.7.3]/1 to:

• Clarify names exported by a module in an exported module-import-declaration are exported.
• State that mixing exported and non-exported module imports is valid.
• Rename M’ and M to M1 and M2 respectively:

1 An exported module-import-declaration nominating a module M’M2 in the purview of a
module interface unit M1 makes all names exported bynamesof M’M2, including those
made visible in M2 via its own exported module-import-declarations, visible to any
translation unit importing M1. A module may be named in multiple exported and non-
exported module-import-declarations. [Note: A module interface unit (for a module M)
containing a non-exported module-import-declaration nominating M4 in interface unit
M3 does not make the imported names exported by M4 of transitively visible to translation
units importing the module M3. — end note]

The first sentence is extended to make it clear that exported imports are made transitively visible. The
new second sentence clarifies that mixing exported and non-exported imports is well formed. The note

sentence is reordered to match the structure of the first sentence. The renaming of M’ and M matches

other parts of the TS where multiple modules are discussed.

5 Acknowledgements
I would like to thank Boris Kolpackov <boris@codesynthesis.com> for bringing this to my attention
and experimenting with various implementations. I thank Gaby dos Reis <gdr@microsoft.com> and
Gor Nishanov <gorn@microsoft.com> for drafting review.

mailto:gorn@microsoft.com
mailto:boris@codesynthesis.com

	1 Background
	2 Example
	3 Discussion
	3.1 User visibility
	3.2 Implementation unit visibility
	3.3 Transitivity of module-export-declaration
	3.4 Visibility of interface’s global module partition

	4 Proposal
	4.1 Changes to dcl.module.interface [10.7.1]
	4.2 Changes to dcl.module.export [10.7.3]

	5 Acknowledgements

