
Metaclasses 

Document Number: P0707 R0 

Date:   2017-06-18 

Reply-to:   Herb Sutter (hsutter@microsoft.com)  

Audience:  SG7 

 

 

Contents 

1 Overview .............................................................................................................................................................2 

2 Language: Metaclasses .......................................................................................................................................5 

3 Library: Example metaclasses .......................................................................................................................... 17 

4 Applying metaclasses: Qt moc and C++/WinRT .............................................................................................. 33 

 

 

 

Abstract 

The only way to make a language more powerful (bigger), but also make its programs simpler, is by abstraction: 

adding well-chosen abstractions that let programmers replace manual code patterns with saying directly what 

they mean. There are two major categories: 

 Elevate coding patterns/idioms into new abstractions built into the language. For example, in current C++, 

range-for lets programmers directly declare “for each” loops with compiler support and enforcement. Tem-

plates are a powerful parameterization of functions and classes, but do not enable authoring new encapsu-

lated behavior. 

 (major, this paper) Provide a new abstraction authoring mechanism so programmers can write new kinds 

of user-defined abstractions that encapsulate behavior. In current C++, the function and the class are the 

two mechanisms that encapsulate user-defined behavior. In this paper, $class metaclasses enable defining 

categories of classes that have common defaults and generated functions, and formally expand C++’s type 

abstraction vocabulary beyond class/struct/union/enum. 

Also, §3 includes a set of common metaclasses, and proposes that several are common enough to belong in 

std::. Each subsection of §3 is equivalent to a significant “language feature” that would otherwise require its  

own EWG paper and be wired into the language, but here can be expressed instead as just a (usually tiny) library 

that can go through LEWG. For example, this paper begins by demonstrating how to implement Java/C# inter-

face as a 10-line C++ std:: metaclass – with the same expressiveness, elegance, and efficiency of the built-in 

feature in such languages, where it is specified as ~20 pages of text. 

 

mailto:hsutter@microsoft.com


P0707 R0: Metaclasses – Sutter  2 

1 Overview 
Metaclasses let programmers write a new kind of efficient abstrac-

tion: a user-defined named subset of classes that share common 

characteristics – including user-defined rules, defaults, and gener-

ated functions – enabled by writing a custom transformation from 

normal C++ source code to a normal C++ class definition. There is 

no type system bifurcation; the generated class is a normal class. 

This paper builds on, and with, related work: 

• C++ and published TS work, including concepts, con-

stexpr, if constexpr. 

• In-progress TS work: reflection (P0578 et al., P0590, 

P0598, …) 

• In-progress proposals: compile-time programming 

(P0589, P0595, P0633, …) 

This paper hopes to provide “what we want to be able to write” use cases for using features in the related work. 

Primary goals: 

• Expand C++’s abstraction vocabulary beyond class/struct/union/enum which are hardwired into the lan-

guage. 

• Enable providing longstanding best practices as reusable libraries instead of English guides/books, to have an 

easily adopted vocabulary (e.g., interface, value) instead of lists of rules to be memorized (e.g., remember 

this coding pattern to write an abstract base class or value type, relying on tools to find mistakes). 

• Enable writing compiler-enforced patterns for any purpose: coding standards (e.g., many Core Guidelines 

“enforce” rules), API requirements (e.g., rules a class must follow to work with a hardware interface library, a 

browser extension, a callback mechanism), and any other pattern for classes. 

• Enable writing many new “language extensions” as ordinary library code (instead of pseudo-English stand-

ardese) with equal usability and efficiency, so that they can be unit-tested and debugged using normal tools, 

developed/distributed without updating/shipping a new compiler, and go through LEWG/LWG as code in-

stead of EWG/CWG as standardese. As a consequence, enable standardizing valuable extensions that we’d 

likely never standardize in the core language because they are too narrow (e.g., interface), but could read-

ily standardize as a small self-contained library. 

• Eliminate the need to invent non-C++ “side languages” and special compilers, such as Qt moc, COM MIDL, 

and C++/CX, to express the information their systems need but cannot be expressed in today’s C++. 

Primary intended benefits: 

• For users: Don’t have to wait for a new compiler. Can share some kinds of “new language features” as 

libraries. Can even add productivity features themselves. 

• For standardization: More features as libraries  easier evolution. Testable code  higher quality pro-

posals. 

• For C++ implementations: Fewer new language features  less new compiler work and more capacity to 

improve tooling and quality for existing features. Over time, can deprecate and eventually remove many 

nonstandard extensions. 

Metaclasses are primarily for library writers; users would use them widely, but usually won’t write their own. 

A Clang-based prototype is available at github.com/asutton/clang (source) and cppx.godbolt.org (live compiler). 

https://github.com/isocpp/CppCoreGuidelines/
http://doc.qt.io/qt-4.8/moc.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379174(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/hh699871.aspx?f=255&MSPPError=-2147217396


P0707 R0: Metaclasses – Sutter  3 

1.1 Design principles 
Note These principles apply to all design efforts and aren’t specific to this paper. Please steal and reuse. 

The primary design goal is conceptual integrity [Brooks 1975], which means that the design is coherent and relia-

bly does what the user expects it to do. Conceptual integrity’s major supporting principles are: 

• Be consistent: Don’t make similar things different, including in spelling, behavior, or capability. Don’t 

make different things appear similar when they have different behavior or capability. – For example, in 

metaclasses we use normal class declaration syntax instead of inventing novel syntax. 

• Be orthogonal: Avoid arbitrary coupling. Let features be used freely in combination. – For example, in 

these papers for can be used to process a reflected collection of items (e.g., all the member functions of 

a class), without having a distinct special-purpose for_each<> on a reflected collection. 

• Be general: Don’t restrict what is inherent. Don’t arbitrarily restrict a complete set of uses. Avoid special 

cases and partial features. – For example, this paper prefers to avoid creating a special-purpose syntax to 

declare metaclasses, and instead lets programmers write metaclasses using normal class scope declara-

tion syntax plus the general features of reflection and compile-time programming. Also, metaclasses are 

just code, that can appear wherever code can appear – written inside namespaces to avoid name colli-

sions (including putting common ones in std::), and shared via #include headers or via modules. 

These also help satisfy the principles of least surprise and of including only what is essential, and result in features 

that are additive and so directly minimize concept count (and therefore also redundancy and clutter). 

1.2 Synopsis of P0633-based compile-time programming 
This paper assumes concepts, general compile-time programming 

along the lines proposed in P0633 and related papers, and underlying 

reflection facilities along the lines in P0194, P0385, P0578 and related 

papers. This paper is tracking the evolution of those compile-time fa-

cilities, whose syntax is still undergoing change; here is a “cheat 

sheet” synopsis of current draft syntax for the main features of those 

papers that will be used for this paper’s examples, but the higher-

level metaclass facility proposed herein is not affected by the syntac-

tic details and the intent of this proposal is to build on whatever syn-

tax ends up being adopted. 

The strawman syntax for reflection is prefix $. For example: 

$T       // reflect type T 

$expr      // reflect expression expr 

The strawman syntax for a compile-time code block, which can appear at any scope, is a constexpr { } block. 

Within a constexpr block, -> { } injects code into the enclosing scope. For example: 

constexpr {     // execute this at compile time 

    for (auto m : $T.variables()) // examine each member variable m in T 

        if (m.name() == “xyzzy”)  // if there is one with name “xyzzy” 

           -> { int plugh; }  // then inject also an int named “plugh” 

} 

For further details, see P0633 and the other cited papers. 

https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://wg21.link/p0633
https://wg21.link/p0194
https://wg21.link/p0385
https://wg21.link/p0578


P0707 R0: Metaclasses – Sutter  4 

In addition, this paper proposes compiler-integrated diagnostics, where compiler.error(“message”, 

source_location) directs the compiler to emit the diagnostic message, which is intended to be integrated with 

the compiler’s native diagnostics, including in visual style and control options. For convenience, compiler.re-

quire(cond, “message”, source_location) is equivalent to if constexpr(!cond) compiler.error(“mes-

sage”, source_location);. For example: 

constexpr { 

    if (count_if($T.functions(), [](auto f){ return f.name[0] == ‘g’; }) < 1) 

        compiler.error(“at least ” + to_string(min) + 

                       “ function names must start with ‘g’”); 

} 

1.3 Acknowledgments 
Special thanks to Andrew Sutton and Bjarne Stroustrup for their review feedback on several drafts of this paper 

and other major contributions to C++. They are two of the primary designers of the current Concepts TS. Andrew 

Sutton is also the first implementer of the Concepts TS (in GCC 6), and the first implementer of this proposal (in 

a Clang-based prototype). This paper would be poorer without their insightful feedback. 

Thanks also to the following experts for their comments in discussions and/or on drafts of this paper: Louis 

Brandy, Chandler Carruth, Casey Carter, Matúš Chochlík, Lawrence Crowl, Pavel Curtis, Louis Dionne, Gabriel Dos 

Reis, Joe Duffy, Kenny Kerr, Nicolai Josuttis, Aaron Lahman, Scott Meyers, Axel Naumann, Gor Nishanov, Stephan 

T. Lavavej, Andrew Pardoe, Sean Parent, Jared Parsons, David Sankel, Richard Smith, Jeff Snyder, Mike Spertus, 

Mads Torgersen, Daveed Vandevoorde, Tony Van Eerd, JC van Winkel, Ville Voutilainen, and Titus Winters. 



P0707 R0: Metaclasses – Sutter  5 

2 Language: Metaclasses 
“Classes can represent almost all the concepts we need… Only if the library route is genuinely 
infeasible should the language extension route be followed.” — B. Stroustrup (D&E, p. 181) 

This paper relies on C++ classes’ already being general and unified. Stroustrup resisted all attempts to bifurcate 

the type system, such as to have struct and class be different kinds of types. The result is that the C++ class 

can express virtually every kind of type. – The goal of metaclasses is to fully preserve that, while also being able 

to define different kinds of types as reusable code by providing a narrow targeted hook: the ability to write com-

pile-time code that participates in how the compiler interprets source code and turns it into a class definition. 

Today’s language has rules to interpret source code and applies defaults and generates special member func-

tions (SMFs). Here is a pseudocode example to illustrate how the compiler interprets class and struct: 

 

Today, the contents of the “compiler” box is specified in English-like standardese and hardwired into compiler 

implementations. The generalization in this paper is to ask one narrowly targeted question: 

 



P0707 R0: Metaclasses – Sutter  6 

The intent is to “view struct and class as the first two metaclasses,”1 except that today their semantics are 

baked into the language and written inside C++ compiler implementations, instead of being an extensibility 

point that can be written as ordinary C++ code. 

This hook helps to solve a  number of existing problems caused by the fact that “different kinds of types” are not 

supported by the language itself. For example, today we rely on coding patterns such as abstract base classes 

(“ABCs”) and “regular types” instead of giving names to language-supported features like “interface” or “value” 

that would let users easily name their design intent and get the right defaults, constraints, and generated func-

tions for that kind of type. And the fact that there is only one kind of “class” means that the language’s defaults 

(e.g., all members private by default for classes and public for structs, functions that are virtual in a base class 

are virtual by default in the derived class) and generated special member functions (SMFs) (e.g., generate move 

assignment under these conditions) must be specified using a single heuristic for all conceivable types, which 

guarantees that they will be wrong for many types, and so when the heuristic fails we need tools like =delete to 

suppress an incorrectly generated SMF and =default to opt back in to a desired incorrectly suppressed SMF. 

A metaclass allows programmers to write compile-time code that executes while processing the definition of 

class. This lets the programmer distinguish a subset or “category” of the set of all ordinary classes, identified by 

the metaclass name. It also elevates idiomatic conventions into the type system as compilable and testable 

code.  

The primary goal of metaclasses is to make defining types more convenient and flexible, in a way that achieves 

other goals such as expressing more future “language” extensions as class libraries instead of hardwiring them 

into the core language. 

Metaclasses complement (and rely on) concepts and reflection, which are about querying capabilities – based on 

“does this expression compile” and “does this member/signature exist,” respectively. Metaclasses are about de-

fining types – participating in interpreting the meaning of source code to generate the class definition. 

 

Figure 1: How the pieces fit 

                                                           
1 And union and enum as the next two, though the latter has slightly different syntax than a class. 



P0707 R0: Metaclasses – Sutter  7 

2.1 Overview: “Constructive” concepts 
A metaclass is defined using $class, and can express constraints, defaults, and more using compile-time code. A 

metaclass is just code; it can be put in a namespace, and shared in a header or a module, in the same ways as 

other compile-time code we have today (in particular, templates). For example: 

namespace std::experimental { 
    $class interface { 

        // we will describe how to write code to: 

        //  - apply “public” and “virtual” to member functions by default 

        //  - require all member functions be public and virtual 

        //  - require no data members, copy functions, or move functions 

        //  - generate a pure virtual destructor (if not user-supplied) 

    }; 

} 

A metaclass name can be written in place of class to more specifically define a type in terms of “what it is.” The 

compile-time code is run when instantiating the metaclass by using it to define an ordinary class: 

interface Shape {    // Shape is-a interface 

    int area() const;   // metacode in $class interface runs on 

    void scale_by(double factor); // the contents in this protoclass body 

}; 

Here: 

• Metaclass interface is used in place of the unspecialized keyword class to state that the characteristics 

associated with interface apply to Shape. 

• The code the user writes as the body of Shape is the source protoclass. It is passed as input to the meta-

class interface. The contents are available via reflection; the functions can be reflected as $inter-

face.functions(), the data members as $interface.variables(), etc. 

• At the opening brace of interface, Shape is open and its definition can be used by code in the body of 

metaclass interface, for reflection and other purposes. While a class is open (and only then), reflection 

on itself returns non-const information that can be modified. 

• At the closing brace of interface, metaclass finalization runs (see below), after which Shape is complete 

a normal fully defined class type. This is the point of definition of Shape. When a class is fully defined, 

reflection returns const information. 

Note Unlike in Java/C#, the type system is not bifurcated; there is still only one kind of class, and every 

interface is still a class. A metaclass simply gives a name to a subset of classes that share common 

characteristics and makes them easier to write correctly. 

A metaclass’ code is fully general and so can express anything computable. There are four common uses: 

• Enforce rules: Constraints, such as “an interface contains only public virtual functions and is not copy-

able.” Use concepts to express usage-based patterns, and use reflection to query specific entities; to-

gether these enable a constraint to express anything computable about a type. 

• Provide defaults: Implicit meanings, such as “an interface’s functions are public and virtual by de-

fault” without the author of a particular interface type having to specify the default. 



P0707 R0: Metaclasses – Sutter  8 

• Generate functions: Default declarations and implementations for functions that all classes conforming 

to the metaclass must have, such as “a value always has copy and move, and memberwise definitions 

are generated by default if copy and move are not explicitly written by hand.” 

• Perform transformations: Changes to declared entities, such as “an rt_interface must have an HRE-

SULT return type, and a non-void return type must be changed to an additional [[out, retval]] pa-

rameter instead,” or “a variant type replaces all of the data members declared in the protoclass with 

an opaque buffer in the fully defined class.” 

Notes One result is that metaclasses provide “generalized opt-in” for generated functions. A metaclass re-

places the built-in class special member function generation rules because the metaclass is taking 

over responsibility for all generation. 

 C++ provides only a few “special” generated functions for all classes, and more are desirable (e.g., 

comparisons). They are difficult to manage and extend because today C++ has only a monolithic uni-

verse of all classes, with no way to name subsets of classes. So, each compiler-generated “special 

member function” has to be generated based on a general heuristic that must work well enough for 

all conceivable classes to decide whether the function would likely be desired. But no heuristic is 

correct for all types, so this led to bugs when a special function was generated or omitted inappro-

priately (the heuristic failed), which led to the need for ways to “opt back out” and turn off a gener-

ated function when not desired (=delete) or to “opt back in” and use the default function semantics 

when the heuristic did not generate them (manual declaration followed by =default). Any new gen-

erated functions, such as comparisons, would need their own heuristics and face the same problems 

if the same rule is forced to apply to all possible classes. 

 Metaclasses provide a way to name a group of classes (a subset of the universe of all classes), and 

an extensible way to give that subset appropriate generated functions. Because the generated func-

tions are provided by the metaclass, the metaclass name is the natural “opt-in” to get everything it 

provides. In turn, because generated functions are provided exactly and only when asked for, meta-

classes remove the need to reinstate/suppress them – because we opted in, the functions the meta-

class generates cannot logically be suppressed because if we didn’t want them we wouldn’t have 

opted into the metaclass (thus no need for =delete for generated functions), and because they are 

never suppressed by a heuristic we never need to reinstate them (thus no need to =default them). 

 Of course, =default and =delete are still useful for other things, such as a convenient way to get 

default bodies (see P0515) or to manage overload sets, respectively. The point here is only that, 

when using metaclasses, they are no longer needed to override an overly general heuristic that 

guesses wrong. 

In a metaclass the following defaults apply, and are applied in metaclass finalization: 

• Functions are public by default, and data members are private by default (if not already specified). 

• The only implicitly generated function is a public nonvirtual default destructor (if not declared). 

  



P0707 R0: Metaclasses – Sutter  9 

These are applied by the default metaclass program that runs the following at the end of the class definition af-

ter all other compile-time metaclass code (using __ because this is in the language implementation of $class): 

constexpr { 

    for (auto o : $thisclass.variables()) 

        if (!f.has_access()) f.make_private(); // make data members private by default 

    bool __has_declared_dtor = false; 

    for (auto f : $thisclass.functions()) { 

        if (!f.has_access()) f.make_public(); // make functions public by default 

        __has_declared_dtor |= f.is_dtor();  // and find the destructor 

    } 

    if (!__has_declared_dtor)    // if no dtor was declared, then 

        -> { public: ~$thisclass.name$() { } }  // make it public nonvirtual by default 

} 

2.2 Metaclass bird’s-eye overview: Usage and definition examples 
To illustrate, here is an overview of some equivalent code side by side. In each case, the code on the right is just 

a more convenient way to write exactly the code on the left and so has identical performance, but the code on 

the right offers stronger abstraction and so eliminates classes of errors and is more robust under maintenance. 

C++17 style This paper (proposed) 

Applying a reusable abstraction with custom defaults and constraints = Medium improvement 
 

class IShape { 
public: 
    virtual int area() const =0; 
    virtual void scale_by(double factor) =0; 
    // ... etc. 
 

    virtual ~IShape() noexcept { }; 
 

    // be careful not to write nonpublic/nonvirtual function 
};  //   or copy/move function or data member; no enforcement 
 

 

interface IShape { 
    int area() const; 
    void scale_by(double factor); 
    // ... etc. 
}; 
 
// see below in this table for the 
// definition of $class interface 

Applying a reusable abstraction that additionally has custom generated functions = Large improvement 
 

class Point { 
    int x = 0; 
    int y = 0; 
 

public: 
    // ... behavior functions ... 
 

    Point() = default; 
 

    friend bool operator==(const Point& a, const Point& b) 
        { return a.x == b.x && a.y == b.y; } 
 

    friend bool operator< (const Point& a, const Point& b) 
        { return a.x < b.x || (a.x == b.x && a.y < b.y); } 
 

    friend bool operator!=(const Point& a, const Point& b) { return !(a == b); } 
    friend bool operator> (const Point& a, const Point& b) { return b < a; } 
    friend bool operator>=(const Point& a, const Point& b) { return !(a < b); } 
    friend bool operator<=(const Point& a, const Point& b) { return !(b < a); } 
}; 
 
 

 

value Point { 
    int x = 0; 
    int y = 0; 
 

    // ... behavior functions ... 
}; 



P0707 R0: Metaclasses – Sutter  10 

Applying a reusable abstraction with defaults, generated functions, and custom semantics = XL improvement 
 

template <class T1, class T2> 
struct pair { 
   using first_type  = T1; 
   using second_type = T2; 
 

   T1 first; 
   T2 second; 
 

   template <class... Args1, class... Args2> 
     pair(piecewise_construct_t, 
          tuple<Args1...> args1, 
          tuple<Args2...> args2); 
 

   constexpr pair(); 
   pair(const pair&) = default; 
   pair(pair&&) = default; 
   pair& operator=(const pair& p); 
   pair& operator=(pair&& p) noexcept(see below); 
   void swap(pair& p) noexcept(see below); 
   explicit constexpr pair(const T1& x, const T2& y); 
   template<class U, class V> 
     explicit constexpr pair(U&& x, V&& y); 
   template<class U, class V> 
     explicit constexpr pair(const pair<U, V>& p); 
   template<class U, class V> 
     explicit constexpr pair(pair<U, V>&& p); 
   template<class U, class V> 
     pair& operator=(const pair<U, V>& p); 

 

   template<class U, class V> 
     pair& operator=(pair<U, V>&& p); 
}; 
 

 

template <class T1, class T2> 
  constexpr bool operator== 
    (const pair<T1,T2>& x, const pair<T1,T2>& y); 
template <class T1, class T2> 
  constexpr bool operator< 
    (const pair<T1,T2>& x, const pair<T1,T2>& y); 
template <class T1, class T2> 
  constexpr bool operator!= 
    (const pair<T1,T2>& x, const pair<T1,T2>& y); 
template <class T1, class T2> 
  constexpr bool operator> 
    (const pair<T1,T2>& x, const pair<T1,T2>& y); 
template <class T1, class T2> 
  constexpr bool operator>= 
    (const pair<T1,T2>& x, const pair<T1,T2>& y); 
template <class T1, class T2> 
  constexpr bool operator<= 
    (const pair<T1,T2>& x, const pair<T1,T2>& y); 
template<class T1, class T2> 
  void swap(pair<T1, T2>& x, pair<T1, T2>& y) 
    noexcept(noexcept(x.swap(y))); 
template <class T1, class T2> 
  constexpr pair<V1, V2> 
    make_pair(T1&& x, T2&& y); 

 

template<class T1, class T2> 
literal_value pair { 
    T1 first; 
    T2 second; 
}; 
 
// note: section 3 shows code for 
// all metaclasses mentioned in the 
// paper except for literal_value 

Writing as-if a new ‘language’ feature using compile-time code + adding expressive power = XXL improvement 
 

// C# language spec: ~20 pages of nontestable English 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

// User code (today’s Java or C#) 
 

interface IShape { 
    int area(); 
    void scale_by(double factor); 
} 

 

// (Proposed) C++ library impl: ~10 lines of testable code 
 

$class interface { 
 

  ~interface() noexcept { } 
 

  constexpr { 
    compiler.require($interface.variables().empty(), 
      "interfaces may not contain data"); 
 

    for (auto f : $interface.functions()) { 
 

      compiler.require(!f.is_copy() && !f.is_move(), 
        "interfaces may not copy or move; consider a" 
        " virtual clone() instead"); 
 

      if (!f.has_access()) f.make_public(); 
      compiler.require(f.is_public(), 
        "interface functions must be public"); 
 

      f.make_pure_virtual(); 
    } 
  } 
}; 
 
 
 
 
 

// User code (proposed C++) 
 

interface IShape { 
    int area() const; 
    void scale_by(double factor); 
}; 

Notes Re “interface”: C++ has always been able to express “interfaces” in a manual ad-hoc manner and 

even gave the idiomatic convention a name (ABCs, for abstract base classes). There should be a way 

for class authors to express their intent more directly with a name that is actual code. 



P0707 R0: Metaclasses – Sutter  11 

 Re “pair”: Specifying the “simple” type std::pair has been embarrassingly complex. For years, I 

have been asking the world’s most experienced C++ language and library experts to describe what is 

missing from C++ to enable expressing std::pair as simply as 

  template <class T1, class T2> struct pair { T1 first; T2 second; }; 

 but I never received an answer. As far as I know, this is the first proposal that achieves that goal, 

changing “struct” to a metaclass name (herein I call it “literal_value”) that can then be reused di-

rectly to just as simply define other similar types (e.g., std::tuple, users’ own literal value types). 

2.3 Example: interface 
The previous page shows the code for an example, $class interface, that could be a candidate for the stand-

ard library, and that has the same expressiveness, efficiency and usability as the same feature hardwired into 

other languages. 

Note The concept of an “interface” exists in many languages as a built-in feature, specified in all those 

languages as pages of human-language specification and implemented in a compiler. I believe that 

the above specification and implementation is as good (and sometimes better) in every respect, in-

cluding in strength of abstraction, expressiveness, error diagnostic quality, testability, debuggability, 

run-time performance, and (to be proven) compile-time performance. 

$interface.functions() includes all functions in the current class interface is being applied to, including 

functions it inherited from any of its base classes. The interface metaclass: 

• Implicitly generates a pure virtual destructor. In this case we can just implicitly declare the pure virtual 

destructor without any additional checks to see whether the user declared it the same way explicitly, 

because if the user did declare it explicitly then this declaration is just redundant. (In other cases, we’ll 

first check to see what the user declared, and then supply generated functions only if the user did not.) 

• Applies defaults via compile-time code to make all functions public and pure virtual. This applies to all 

functions in the type including the required function that it declares itself (the destructor). 

• Applies constraints: If the author of the type applying interface explicitly declared any nonpublic or 

nonvirtual function, copy/move function, or data member, they get a compile-time error message. 

 Applying interface 
So now we can use interface in place of class when defining a new type, to get its defaults and generated 

functions, and to apply its requirements at compile time. 

interface drawable {   // this is an interface 

    int draw(widget w);  // draw now defaults to public pure virtual 

    // ... 

}; 

And user code gets high-quality diagnostics when it violates constraints. For example, if this class is modified 

during maintenance by a programmer who forgets that it should consist of only public pure virtual functions, 

today the code could silently compile, but with interface the compiler helps robustly maintain the class au-

thor’s declared intent: 

interface drawable {   // attempted modification during maintenance... 

    int draw(widget w);  // ok 



P0707 R0: Metaclasses – Sutter  12 

private: 

    void scale(double factor); // ERROR: “interface functions must be public” 

    string data;   // ERROR: “interfaces may not contain data” 
}; 

Of course, if the maintainer really wants to add a nonpublic function or data member, they can still do that – 

they just need to change interface to a more suitable metaclass name, or just class, to document that this is 

no longer an interface. The change is simple, but not silent (it wouldn’t be silent for class users in any event!), 

so that the maintainer cannot violate the original class author’s intent by accident. 

2.4 Declarations 
The contents of a metaclass consist of: 

• Declarations of members to appear the completed class, using ordinary class scope declaration syntax. 

• Compile-time code to reflect, and modify protoclass members in-place or compute new declarations. 

At metaclass scope, a member declaration can appear unadorned using all ordinary syntax. If in a constexpr 

block, it can be injected into the metaclass scope using -> { }. 

Alternatively, a part of the declaration can be provided by compatible meta:: values. For example, in a function 

declaration, the function name can be provided by any compile-time meta:: value that has a .name, or a 

meta::string, and the parameter list can be provided by any compile-time meta:: value that has .parameters: 

$class x { 

    // for each function, create a no-op overload with an extra “int” parameter 

    constexpr { 

        for (auto f : $x.functions()) 

          -> { void (f$)( f$, int ) { } } 

    } 

}; 

2.5 Composition 
Because metaclasses are just code, they can be combined and refactored like regular code. 

In particular, we can define additional metaclasses in terms of existing ones using inheritance-like extension syn-

tax (note that there is no need, and no support, for declaring access-specifiers). Here is an example from §3.5: 

$class value : basic_value, ordered { // a value is-an ordered basic_value 

    // ... with additional defaults/constraints/generation/etc. ... 

}; 

As with base class constructors, each metaclass is executed in left-to-right depth-first order. If the composed 

metaclasses conflict (e.g., one requires all data members to be private, and the other all public), the result will 

not be usable because any attempt to use it will cause errors. 

A metaclass can also compose concepts, with the semantics that the resulting class is required to satisfy the con-

cept. For example, given a concept Regular, we can add it to the requirements list: 

 

 



P0707 R0: Metaclasses – Sutter  13 

$class value : ordered, basic_value, Regular { // include a Concept 

    // etc. 

}; 

and behaves as a convenience shorthand for: 

$class value : ordered, basic_value { 

    // etc.    // run metaprogram first: defaults/generation/… 

    requires Regular<value>; // then put this at the end, when we have 
};      // the complete generated type 

Here is a second example, returning to interface: Let’s say we decided that interface could be refactored to 

extract just the first line, the “pure virtual destructor” requirement, and have it be a separately reusable meta-

class. We could write the following equivalently to the previous definition of interface: 

$class has_pure_virtual_dtor { 

    // generated function: now moved into its own metaclass 

    ~name$() noexcept = 0; 

}; 

$class interface : has_pure_virtual_dtor { 

    // 8<---no mention of a destructor, now we get it from has_pure_virtual_dtor 

    // ... 

    // ... remaining unfactored default/constraint logic as before 

    // ... 

}; 

2.6 .is and .as 

 .is to match 
We can perform ad-hoc duck typing to test whether a class implicitly satisfies the requirements of a metaclass M. 

In this proposal, $T.is(M) evaluates to true iff: 

• applying M to T (as-if the definition of T had specified M) succeeds;  and  

• the resulting type has no new members not already present in T. 

For example, this test uses the copyable_pointer metaclass defined in §3.6: 

static_assert ($shared_ptr<widget>.is(copyable_pointer<widget>)); 

For example, consider IShape written equivalently by hand vs. using the interface metaclass: 

class IShape1 {   // written by hand as in C++17 

public: 

    virtual void draw() = 0; 

    virtual ~IShape1() noexcept = 0; 

}; 

interface IShape2 {   // same written using a metaclass 

    void draw(); 

}; 



P0707 R0: Metaclasses – Sutter  14 

Both types .is(interface): 

static_assert ($IShape1.is(interface)); 

static_assert ($IShape2.is(interface)); 

This applies transitively to base metaclasses. For example, if interface had been refactored as shown in §2.5 to 

be written in terms of a has_pure_virtual_dtor “base” metaclass, the following would also hold: 

static_assert ($IShape1.is(has_pure_virtual_dtor)); 

static_assert ($IShape2.is(has_pure_virtual_dtor)); 

This loop prints the names of all interfaces in namespace N: 

constexpr { 

    for (auto t : $N.types()) 

        if (t.is(interface)) 

            cout << t.name() << endl; 

} 

 .as to apply 
Additionally, we can use a class as-if it had been declared with a metaclass, including to apply defaults and gen-

erated functions. To express that, use $T.as(M), which generates a type that is identical to T but is additionally 

defined using the named metaclass M. Here is an example using a metaclass ordered (see §3.4): 

struct legacy_point { int x; int y; }; // in C++17 this is not comparable... 

set<legacy_point> s;    // and so this is an error 

using ordered_point = $legacy_point.as(ordered); // ... but this is ordered 

set<ordered_point> s;     // and so this is ok 

Interestingly, the above example illustrates how strong typedefs fall out naturally from .as … 

 Bonus: strong typedefs via using … as 
To enable general strong typedefs via using … as, we first define an empty metaclass, which requires and adds 

nothing to the type. Let’s call it new_type because that’s how programmers will use it: 

$class new_type { };    // no-op metaclass 

Then the following is a spelling for “strong typedef of T”: 

using my_T = $T.as(new_type); 

Common motivating cases are new int and string types that work the same as the originals but are distinct 

types for overloading and do not implicitly convert to/from the original type by default. 

using handle = $int.as(new_type);  // better than “enum class handle : int { };” 

using score  = $unsigned.as(new_type); 

using player = $string.as(new_type); 

 

http://stackoverflow.com/questions/28916627/strong-typedefs
http://stackoverflow.com/questions/34287842/c-strongly-typed-using-and-typedef
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3515.pdf


P0707 R0: Metaclasses – Sutter  15 

2.7 Concepts + metaclasses 
Concepts and metaclasses are complementary. The key is that metaclasses are “constructive concepts” in that 

they go beyond concepts to define new types, but metaclass implementations use both concepts and reflection: 

• Metaclasses use concepts to ask “can class T be used this way” via use-pattern constraints. 

• Metaclasses use reflection-based computation to ask “does class T have these contents” via inspection. 

Because both concepts and metaclasses have requirements and constraints, we should allow the complemen-

tary applications, which both involve replacing the keyword class. 

First, concepts allow class uses to be constrained by replacing class with a concept name: 

template <class     T> // unconstrained – any type will do 

template <Sequence  S> // constrained – requires Sequence<S> 

So we propose that a metaclass also be allowed to replace class here with .is meaning: 

template <interface I> // constrained – requires $I.is(interface) 

Second, metaclasses allow class definitions to be constrained by replacing class with a metaclass name: 

class     X { /*…*/ }; // unconstrained – “just some type” 

interface I { /*…*/ }; // constrained – is-an interface 

So we propose that a concept also be allowed to replace class here with the meaning of checking that the com-

plete type must satisfy the concept: 

Sequence  S { /*…*/ }; // constrained – requires Sequence<S> 

Note Casey Carter has asked for this feature in the past, and reports that this capability would be used 

widely in the Ranges TS implementation. 

 There is currently no way to enforce these conditions for specializations of a template. Here is the 

essence of the problem: 

  template<typename T> 

 struct S { 
     // ... 

     static_assert(Regular<S>); // always fails, S is incomplete 
 }; 

  static_assert(Regular<S<???>>); // what goes in ??? 

 The above proposal provides a way to express an annotation in S that can be extracted and applied 

after instantiation: 

  template<typename T> 

 Regular S { 

     // ... 
 }; 

 Alternatively, writing an explicit requires is useful in combination with conditional compile-time 

programming. For example: 



P0707 R0: Metaclasses – Sutter  16 

  template<typename T> 

 struct vector { 

      // ... 

      constexpr { 

         if (Copyable<T>)    // if T is Copyable, then 

             -> { requires Copyable<vector>; } // vector<T> is also Copyable 

     } 
 }; 

 However, note that this is just a requirement check; it does not make vector model Copyable. This 

is a minor extension of modern Concepts TS concepts; it is not moving towards C++0x concepts, 

Haskell typeclasses, Rust traits, etc. by injecting anything into the class. 

 

 



P0707 R0: Metaclasses – Sutter  17 

3 Library: Example metaclasses 
This section shows how to use metaclasses to define powerful abstractions as libraries, often only in a few lines, 

without loss of efficiency, expressiveness, usability, diagnostics, or debuggability compared to languages that 

support them as language features baked into their compilers. 

This paper proposes considering the following subset as std:: standard libraries: 

• interface, an abstract base class with all public virtual functions and no copy/move or data members; 

• base_class, a class designed to be inherited from with no copy/move or data members; 

• ordered et al., each a class that supports a comparison category (e.g., total ordering, equality compari-

son); 

• value, a class that is a “regular” type with default construction, destruction, copy/move, and compari-

son (memberwise by default), and no virtual functions or protected members; 

• plain_struct (what we usually mean when we write “struct”), and flag_enum. 

3.1 interface 
“… an abstract base class defines an interface…”—Stroustrup (D&E § 12.3.1) 

An interface is a class where all functions are public and pure virtual, including by default, and there is a vir-

tual destructor and no data or copying. The definition is as we saw earlier. 

$class interface { 

    /* see §2.3 */ 

}; 

We can then use this to define classes, including to use access/virtual defaults and enforce rules: 

interface drawable { 

    void draw(canvas& c);   // defaults to pure virtual 

    // int x;     // would be error, no data allowed 

    // drawable(const drawable& from); // would be error, no copying allowed 

}; 

In this interface, draw is implicitly public and pure virtual because nothing else is allowed. Trying to make a func-

tion explicitly public or virtual would be fine but redundant. Trying to make a function explicitly nonpublic or 

nonvirtual would be an error, as would adding copy/move functions or data members. 

3.2 base_class 
A pure base_class is a class that has no instance data, is not copyable, and whose a destructor is either public 

and virtual or protected and nonvirtual. Unlike an interface, it can have nonpublic and nonvirtual functions. 

Also, implemented interfaces are public by default. 

$class base_class { 

    constexpr { 

        for (auto f : $base_class.functions()) { 

            if (f.is_dtor() && !(f.is_public() && f.is_virtual()) 

                            && !(f.is_protected() && !f.is_virtual())) 



P0707 R0: Metaclasses – Sutter  18 

                compiler.error("base class destructors must be public and" 

                               " virtual, or protected and nonvirtual"); 

            if (f.is_copy() || f.is_move())  
                compiler.error("base classes may not copy or move;" 

                               " consider a virtual clone() instead"); 

        } 

        for (auto b : $base_class.base_classes()) 

            if (b.is(interface) && !b.has_access()) f.make_public(); 

        if (!$base_class.variables().empty()) 
            compiler.error("pure base classes may not contain data"); 

    } 

}; 

These can be used to write types that match that metaclass: 

base_class shape : drawable {  

    override void draw(canvas& c) { /*...*/ } 

}; 

class rectangle : public shape { 

    override void draw(canvas& c) { /*...*/ } 

}; 

3.3 final 
A final type is a class that cannot be further included in another type (aka derived from). 

$class final { 

    final.can_derive = false;  // can’t derive from this 

}; 

For example: 

final circle : shape { 

    override void draw(canvas& c) { /*...*/ } 

}; 

3.4 ordered 
Notes Up to this point, we have only used metaclasses (a) to apply defaults to declared functions and vari-

ables, and (b) to enforce requirements. Now we’re going to take another step: additionally using 

them to implement custom default-generated functions. C++17 already does this for the special 

member functions; the difference here is that no functions are “special” (this works for any function 

we want to both require to exist and generate a suitable default implementation for) and it’s not 

hardwired into the language. In this section and the next, we’ll cover the most familiar generated 

functions—default construction, copy construction, copy assignment, move construction, and move 

assignment—and comparisons which is where we’ll begin. 

 This section is written in terms of C++17 and does not depend on my parallel paper P0515 Con-

sistent Comparison. However, P0515 makes comparisons much better, and if that paper is adopted 

then this section is easily updated to refer to the features added by that paper including <=> three-

http://wg21.link/P0515
http://wg21.link/P0515


P0707 R0: Metaclasses – Sutter  19 

way comparison and all five comparison categories. Nearly all of P0515 can be implemented as a 

library in this way, except only the automatic generation of comparison functions for fundamental 

types and for existing class types defined without metaclasses. 

This section illustrates how opting in to default comparisons is easy and efficient using metaclasses, by demon-

strating a single comparison category (total ordering) implemented as a library with full opt-in semantics. 

An ordered type is a class that requires operators <, >, <=, >=, ==, and !=. If the functions are not user-written, 

lexicographical memberwise implementations are generated by default. 

$class ordered { 

    constexpr { 

        if (! requires(ordered a) { a == a; }) -> { 

            friend bool operator == (const ordered& a, const ordered& b) { 

                constexpr { 

                    for (auto o : ordered.variables())  // for each member 

                       -> { if (!(a.o.name$ == b.(o.name)$)) return false; } 

                } 

               return true; 

            } 

        } 

        if (! requires(ordered a) { a < a; }) -> { 

        friend bool operator <  (const ordered& a, const ordered& b) { 

                for (auto o : ordered.variables()) -> {  // for each member 

                    if (a.o.name$ < b.(o.name)$) return true; // (disclaimer: inefficient; P0515 

                    if (b.(o.name$) < a.o.name$) return false; // with 3-way comparison is better) 

                } 

                return false; 

            } 

        } 

        if (! requires(ordered a) { a != a; }) 

            -> { friend bool operator != (const ordered& a, const ordered& b) { return !(a == b); } } 

        if (! requires(ordered a) { a > a; }) 

            -> { friend bool operator >  (const ordered& a, const ordered& b) { return   b <  a ; } } 

        if (! requires(ordered a) { a <= a; }) 

            -> { friend bool operator <= (const ordered& a, const ordered& b) { return !(b <  a); } } 

        if (! requires(ordered a) { a >= a; }) 

            -> { friend bool operator >= (const ordered& a, const ordered& b) { return !(a <  b); } } 

    } 

}; 

Note This example shows how using concepts is convenient in metaclasses, especially when we just care 

whether a given operation (here comparison) is provided already at all, regardless of the manner in 

which it’s provided (as a member, nonmember friend, etc.). So this code just writes: 

  if (! requires(ordered a) { a == a; }) 

 Alternatively, we could also have written the following (assuming constexpr range-based find_if), 

but it’s more tedious and less general: 



P0707 R0: Metaclasses – Sutter  20 

  if (find_if($ordered.functions(), 

               [](auto x){ return x.name == “operator==”; }) 
        != ordered.functions().end()) 

The author of a totally ordered type can just apply ordered to get all comparisons with memberwise semantics: 

// using ordered (but prefer “value”, see §3.5 -- this is for illustration) 
ordered Point { int x; int y; /*copying etc. */ }; // no user-written comparison 

Point p1{0,0}, p2{1,1}; 

assert (p1 == p1);   // ok, == works 

assert (p1 != p2);   // ok, != works 

set<Point> s;    // ok, less<> works 

s.insert({1,2});   // ok, < works 

However, most code will not use ordered directly because it’s an intermediate metaclass. Which brings us to 

value, an important workhorse… 

3.5 value types (regular types) 
A value is a class that is a totally ordered regular type. It must have all public default construction, copy/move 

construction/assignment, and destruction, all of which are generated by default if not user-written; and it must 

not have any protected or virtual functions (including the destructor). 

basic_value carries the common defaults and constraints that apply to regular value types: 

$class basic_value { 

    constexpr { 

        if (find_if(value.functions(), [](auto x){ return x.is_default_ctor(); }) != value.functions().end()) 

            -> { basic_value() = default; } 

        if (find_if(value.functions(), [](auto x){ return x.is_copy_ctor(); }) != value.functions().end()) 

            -> { basic_value(const basic_value& that) = default; } 

        if (find_if(value.functions(), [](auto x){ return x.is_move_ctor(); }) != value.functions.end()) 

            -> { basic_value(basic_value&& that) = default; } 

        if (find_if(value.functions(), [](auto x){ return x.is_copy_assignment(); }) != value.functions.end()) 

            -> { basic_value& operator=(const basic_value& that) = default; } 

        if (find_if(value.functions(), [](auto x){ return x.is_move_assignment(); }) != value.functions.end()) 

            -> { basic_value& operator=(basic_value&& that) = default; } 

        for (auto f : value.functions()) { 

            compiler.require(!f.is_protected() && !f.is_virtual(), 

                             "a value type must not have a protected or virtual function"); 

            compiler.require(!f.is_dtor() || !f.is_public()), "a value type must have a public destructor"); 

        } 

    } 

}; 

A value is a totally ordered regular type: 

$class value : ordered, basic_value { }; 



P0707 R0: Metaclasses – Sutter  21 

Note If P0515 is accepted, we would naturally expand this to provide other convenient opt-ins here, and 

because “total ordering” and “equality comparable” are the most commonly used and the default to 

be encouraged, they get the nice names: 

 $class weakly_ordered_value    : weakly_ordered    , basic_value { }; 

$class partially_ordered_value : partially_ordered , basic_value { }; 

$class equal_value             : equal             , basic_value { }; 
$class weakly_equal_value      : weakly_equal      , basic_value { }; 

Example: 

value Point { int x; int y; }; // note: that’s it, convenient and fully opt-in 

Point p1;    // ok, default construction works 

Point p2 = p1;    // ok, copy construction works 

assert (p1 == p1);   // ok, == works 

assert (p1 >= p2);   // ok, >= works 

set<Point> s;    // ok, less<> works 

s.insert({1,2}); 

3.6 plain_struct 
“By definition, a struct is a class in which members are by default public; that is, 

 struct s { … 

is simply shorthand for 

 class s { public: …  

… Which style you use depends on circumstances and taste. I usually prefer to use struct for 
classes that have all data public.” — B. Stroustrup (C++PL3e, p. 234) 

A plain_struct is a basic_value with only public objects and functions, no virtual functions, no user-defined 

constructors (i.e., no invariants) or assignment or destructors, and the most powerful comparison supported by 

all of its members (including none if there is no common comparison category). 

Notes Up to this point, we’ve seen (a) applying defaults, (b) enforcing requirements, (c) combining meta-

classes. Now we’ll look at reflecting on members, evaluating whether they meet a metaclass, and 

selectively combining metaclasses. 

 The full 5-way comparison category computation below assumes we’ve gone ahead with P0515, so 

they’re stronger than the simple extract shown in §3.3. 

$class plain_struct : basic_value { 

    constexpr { 

        for (auto f : plain_struct.functions()) { 

            compiler.require(f.is_public() || !f.is_virtual()) 
                             "a plain_struct function must be public and nonvirtual"); 

            compiler.require(!(f.is_ctor() || f.is_dtor() || f.is_copy() || f.is_move()) 

                               || f.has_default_body()) 

                             "a plain_struct can’t have a user-defined " 



P0707 R0: Metaclasses – Sutter  22 

                             "constructor, destructor, or copy/move"); 

        } 

        bool all_ordered           = true, // to compute common comparability 
              all_weakly_ordered    = true, 

              all_partially_ordered = true, 

              all_equal             = true, 

              all_weakly_equal      = true; 

        for (auto o : plain_struct.variables()) { 

            if (!o.has_access()) o.make_public(); 
            compiler.require(o.is_public(), "plain_struct members must be public"); 

            all_ordered           &= o.type.is(ordered); 

            all_weakly_ordered    &= o.type.is(weakly_ordered); 

            all_partially_ordered &= o.type.is(partially_ordered); 

            all_equal             &= o.type.is(equal); 

            all_weakly_equal      &= o.type.is(weakly_equal); 
        } 

        if (all_ordered)   // generate greatest common comparability 

            plain_struct = plain_struct.as(ordered); 

        else if (all_equal) 

            plain_struct = plain_struct.as(equal); 

        else if (all_weakly_ordered) 

            plain_struct = plain_struct.as(weakly_ordered); 

        else if (all_weakly_equal) 

            plain_struct = plain_struct.as(weakly_equal); 

        else if (all_partially_ordered) 

            plain_struct = plain_struct.as(partially_ordered); 

    } 
}; 

Now we can use plain_struct to have this meaning strictly, without relying on it being just a personal conven-

tion. To write a type that self-documents this intent, we can write for example: 

plain_struct group_o_stuff { 

    int i;    // implicitly public 

    string s; 

}; 

group_o_stuff a, b, c;  // ok, because values are default-constructible 

if (a == b && c > a) { }  // ok, ordered because all members are ordered 

3.7 copyable_pointer 
A copyable_pointer is a value that has at least one type parameter and overloads * to return an lvalue of that 

parameter and -> to return a pointer to that parameter. 

$class copyable_pointer : value { 

    T& operator* () const;  // require * and -> operators 

    T* operator->() const; 



P0707 R0: Metaclasses – Sutter  23 

}; 

Now we can use copyable_pointer both to tell if a type is a smart pointer, and to write new smart pointers 

(unlike concepts). 

static_assert ($shared_ptr<widget>.type.is(copyable_pointer)); 

copyable_pointer my_ptr { 

    // ... can’t forget to write copying and both indirection operators ... 

}; 

3.8 enum_class and flag_enum 
“C enumerations constitute a curiously half-baked concept. … the cleanest way out was to 

deem each enumeration a separate type.”—[Stroustrup, D&E §11.7] 

“An enumeration is a distinct type (3.9.2) with named constants”—[ISO C++ standard] 

An enum_class is a totally ordered value type that stores a value of its enumerators’ type, and otherwise has 

only public $ member variables of its enumerators’ type, all of which are naturally scoped because they are 

members of a type. 

Note Up to this point, we’ve seen (a) applying defaults, (b) enforcing requirements, (c) combining meta-

classes, (d) reflecting on members and computing characteristics such as selectively combining met-

aclasses. Now, we’ll generate an additional data member. 

$class basic_enum : value { 

    constexpr { 
        compiler.require(basic_enum.variables().size() > 0, 

                         "an enum cannot be empty"); 

        if ($basic_enum.variables().front().type().is_auto()) 

             -> { using U = int; } // underlying type 

        else -> { using U = $basic_enum.variables().front().type(); } 

        for (auto o : $basic_enum.variables) { 

            if (!o.has_access())   o.make_public(); 

            if (!o.has_storage())  o.make_constexpr(); 

            if (o.has_auto_type()) o.set_type(U); 

            compiler.require(o.is_public(),    "enumerators must be public"); 

            compiler.require(o.is_constexpr(), "enumerators must be constexpr"); 

            compiler.require(o.type() == U,    "enumerators must use same type"); 

        } 

        -> { U$ value; }    // the instance value 

    } 

}; 

Note A very common request is to be able to get string names of enums (e.g., StackOverflow example). It 

is tempting to provide that as a function on basic_enum that is always available, which would be 

easy to provide. But we need to be careful not to violate C++’s zero-overhead principle; we must not 

impose overhead (here in the object/executable image) by default on programs that don’t use it. 

Making this available always or by default, such as always generating string names for the members 

http://stackoverflow.com/questions/5093460/how-to-convert-an-enum-type-variable-to-a-string


P0707 R0: Metaclasses – Sutter  24 

of a basic_enum, would be a baby step down the slippery slope toward always-on or default-on run-

time metadata. 

 However, making it opt-in would be fine. One way would be have a specific metaclass that adds the 

desired information. A better way would be to write a general constrained function template: 

 template<basic_enum E>  // constrained to enum types 

string to_string(E e) {  

    switch (value) { 

        constexpr { 

            for (const auto o : $E.variables()) 

                if (!o.default_value.empty()) 

                    -> { case o.default_value()$: return E::(o.name())$; } 

        } 

    } 
} 

 Because templates are only instantiated when used, this way the information is generated (a) on 

demand at compile time, (b) only in the calling code (and only those calling programs) that actually 

use it, and (c) only for those enum types for which it is actually used. 

There are two common uses of enumerations. First, enum expresses an enumeration that stores exactly one of 

the enumerators. The enumerators can have any distinct values; if the first enumerator does not provide a 

value, its value defaults to 0; any subsequent enumerator that does not provide a value, its value defaults to the 

previous enumerator’s value plus 1. Multiple enumerators can have the same value. 

$class enum_class : basic_enum { 

    constexpr { 

        U next_value = 0; 
        for (auto o : $enum_class.variables()) { 

            if (!o.has_default_value()) 

                o.set_default_value(next_value); 

            next_value = o.get_default_value()++; 

        } 

    } 

}; 

Here is a state enumeration that starts at value 1 and counts up: 

enum_class state { 

    auto started = 1, waiting, stopped; // type is int 

}; 

state s = state::started; 

while (s != state::waiting) { 

    // ... 

} 

Here is a different enumeration using a different value type and setting some values while using incremented 

values where those are useful: 

enum_class skat_games { 



P0707 R0: Metaclasses – Sutter  25 

    char diamonds = 9, hearts /*10*/, spades /*11*/, clubs /*12*/, grand = 24; 

}; 

Second, flag_enum expresses an enumeration that stores values corresponding to bitwise-or’d enumerators. 

The enumerators must be powers of two, and are automatically generated; explicit values are not allowed. A 

none value is provided, with an explicit conversion to bool as a convenience test for “not none.” Operators | 

and & are provided to combine and extract values. 

$class flag_enum : basic_enum { 

    flag_enum  operator&  (const flag_enum& that) { return value & that.value; } 

    flag_enum& operator&= (const flag_enum& that) { value &= that.value; return *this; } 

    flag_enum  operator|  (const flag_enum& that) { return value | that.value; } 

    flag_enum& operator|= (const flag_enum& that) { value |= that.value; return *this; } 

    flag_enum  operator^  (const flag_enum& that) { return value ^ that.value; } 
    flag_enum& operator^= (const flag_enum& that) { value ^= that.value; return *this; } 

    flag_enum()              { value  = none; } // default initialization 

    explicit operator bool() { value != none; } // test against no-flags-set 

    constexpr { 

        compiler.require(objects.size() <= 8*sizeof(U), 
                         "there are " + objects.size() + " enumerators but only room for " + 

                         to_string(8*sizeof(U)) + " bits in value type " + $U.name()); 

        compiler.require(!numeric_limits<U>.is_signed, 

                         "a flag_enum value type must be unsigned"); 

        U next_value = 1;           // generate powers-of-two values  

        for (auto o : $flag_enum.variables()) { 

            compiler.require(!o.has_default_value(), 

                "flag_enum enumerator values are generated and cannot be specified explicitly"); 

            o.set_default_value(next_value); 

            next_value *= 2; 

        } 

    } 

    U none = 0;                          // add name for no-flags-set value 

}; 

Here is an ios_mode enumeration that starts at value 1 and increments by powers of two: 

flag_enum openmode { 
    auto in, out, binary, ate, app, trunc; // values 1 2 4 8 16 32 

}; 

openmode mode = openmode::in | openmode::out; 

assert (mode != openmode::none);  // comparison comes from ‘value’ 

assert (mode & openmode::out);  // exercise explicit conversion to bool 

Note There is a recurring need for a “flag enum” type, and writing it in C++17 is awkward. After I wrote 

this implementation, Overload 132 (April 2016) came out with Anthony Williams’ article on “Using 

Enum Classes as Bitfields.” That is a high-quality C++17 library implementation, and illustrates the 

http://accu.org/var/uploads/journals/Overload132.pdf


P0707 R0: Metaclasses – Sutter  26 

limitations of authoring not-the-usual-class types in C++: Compared to this approach, the C++17 de-

sign is harder to implement because it relies on TMP and SFINAE; it is harder to use because it re-

quires flag-enum type authors to opt into a common trait to enable bitmask operations; and it is 

more brittle because the flag-enum type authors must still set the bitmask values manually instead 

of having them be generated. In C++17, there is therefore a compelling argument to add this type 

because of its repeated rediscovery and usefulness—but to be robust and usable it would need to 

be added to the core language, with all of the core language integration and wordsmithing that im-

plies including to account for feature interactions and cross-referencing; in a future C++ that had the 

capabilities in this proposal, it could be added as a small library with no interactions and no language 

wording. 

3.9 bitfield 
A bitfield is an object that allows treating a sequence of contiguous bits as a sequence of values of trivially 

copyable types. Each value can be get or set by copy, which the implementation reads from or writes to the 

value bits. To signify padding bits, set the type to void or leave the name empty. It supports equality compari-

son. 

Note Also, treating a bitfield as an object is truer to the C++ memory model. The core language already 

says (though in standardese English) that a sequence of bitfield variables is treated as a single object 

for memory model purposes. That special case falls out naturally when we model a sequence of bits  

containing multiple values as a single object. 

A bitfield metaclass could pass each member’s size as an attribute (e.g., int member [[3]];) – but since we 

already have the bitfield-specific C grammar available, let’s use it: 

bitfield game_stats { 

    int      score_difference : 3; 

    void     _                : 2; // padding 

    unsigned counter          : 6; 

} example; 

Note Up to this point, we’ve seen (a) applying defaults, (b) enforcing requirements, (c) combining meta-

classes, (d) reflecting on members and computing characteristics such as selectively combining met-

aclasses, and (e) generating additional data members. Now we’ll go further and not just generate 

new data members, but actually remove the existing declared data members and replace them. 

Here is the code: 

$class bitfield : final, comparable_value { // no derivation 

    constexpr { 

        auto objects = bitfield.variables(); // take a copy of the class’s objects 
        size_t size  = 0;    // first, calculate the required size 

        for (auto o : objects) { 

            size += (o.bit_length == default ? o.type.size*CHAR_BITS : o.bit_length; 

            if (!o.has_storage()) o.make_member(); 

            compiler.require(o.is_member(), "bitfield members must not be static"); 

            compiler.require(is_trivially_copyable_v<o.T>, 



P0707 R0: Metaclasses – Sutter  27 

                "bitfield members must be trivially copyable"); 

            compiler.require(!o.name.empty() || o.T == $void, 

                "unnamed bitfield members must have type void"); 

            compiler.require(o.type != $void || o.name.empty(), 

                             "void bitfield members must have an empty name"); 

            if (o.type != $void) -> { // generate accessors for non-empty members 

                o.T$ o.name$ () { return /*bits of this member cast to T*/; } 

                set_(o.name)$(const o.T$& val) { /*bits of this value*/ = val; } 

            } 
        } 

    } 

    $bitfield.variables().clear();  // now replace the previous instance vars 

    byte data[ (size/CHAR_BITS) + 1 ]; // now allocate that much storage 

    bitfield() {     // default ctor inits each non-pad member 

        constexpr { 
            for (const auto& o : objects) 

                if (o.type != $void) 

                    -> { new (&data[0]) o.type.name$(); }; 

        } 

    } 

    ~bitfield() {    // cleanup goes here 

        constexpr { 

            for (auto o : objects) 

                if (o.type != $void) 

                    -> { o.name$.~(o.type.name$)(); } 

        } 

    } 

    bitfield(const bitfield& that) : bitfield() { // copy constructor 

        *this = that;   // just delegate to default ctor + copy = 

    } // you could also directly init each member by generating a mem-init-list 

    bitfield& operator=(const bitfield& that) { // copy assignment operator 

        constexpr { 

            for (auto o : objects)   // copy each non-pad member 
                if (o.type != $void)   // via its accessor 

                    -> { case o.num$: set_(o.name$)() = that.(o.name)$(); } 

    } 

    bool operator==(const bitfield& that) const { 

        constexpr {     // (we’ll get != from ‘comparable_value’) 

            for (auto o : objects)  // just compare each member 

                -> { if (o.name$() != that.(o.name)$()) return false; } 

            return true; 

        } 

    } 



P0707 R0: Metaclasses – Sutter  28 

}; 

For example, this bitfield fits in two bytes, and holds two integers separated by two bits of padding: 

bitfield game_stats { 

    int      score_difference : 3; 

    void     _                : 2; // padding 

    unsigned counter          : 6; 

} example; 

example.set_score_difference(-3); // sadly, the home team is behind 

unsigned val = example.counter(); // read value back out 

Note that in computing the size, the metaclass defaults to the natural size if the number of bits is not explicitly 

specified. For example, the following two are the same on systems where int is 32 bits: 

bitfield sample { char c : 7;  int i : 32; }; 

bitfield sample { char c : 7;  int i; }; 

And here is a 7-bit character as an anonymous bitfield type: 

bitfield { char value : 7 } char_7; 

char_7.set_value('a'); 

Of course, if we can transform the declared members to lay them out successively, we could also transform the declared 

members to overlap them in suitably aligned storage, which brings us to Union with similar code… 

Note Unlike C and C++17, special language support is not necessary, packing is guaranteed, and because a 

value’s bits are not exposed there is no need to specially ban attempting to take its address. 

 When adding the concurrency memory model to C++11, we realized that we had to invent a lan-

guage rule that “a set of contiguous bitfields is treated as one object” for the purposes of the ma-

chine memory model. That doesn’t need saying here; contiguous bitfield values are one object. Fur-

ther, in C++11 we had to add the wart of a special “:0” syntax (added in C++11) to demarcate a divi-

sion in a series of bitfields to denote that this was the location to start a new byte and break a series 

of successive bitfields into groups each so that each group could be treated as its own object in the 

memory model. Again, that doesn’t need saying here; each bitfield variable is already an object, 

so if you want two groups of them to be two objects, just do it: use two bitfield objects. 

3.10 safe_union 
A safe_union is a class where at most one data member is active at a time, and let’s just say equality compari-

son is supported. The metaclass demonstrates how to replace the declared data members with an active discri-

minant and a data buffer of sufficient size and alignment to store any of the types. There is no restriction on the 

number or types of members, except that the type must be copy constructible and copy assignable. 

For simpler exposition only (not as a statement on how a variant type should behave), this sample safe_union 

follows the model of having a default empty state and the semantics that if setting the union to a different type 

throws then the state is empty. A safe_union with exactly the C++17 std::variant semantics is equally imple-

mentable. 

$class safe_union : final, comparable_value { // no derivation 



P0707 R0: Metaclasses – Sutter  29 

    constexpr { 

        auto objects = safe_union.variables(); // take a copy of the class’s objects 

        size_t size  = 1;   // first, calculate the required size 
        size_t align = 1;   //   and alignment for the data buffer 

        for (auto o : $safe_union.variables()) { 

            size  = max(size,  sizeof (o.type)); 

            align = max(align, alignof(o.type)); 

            if (o.storage.has_default()) o.make_member(); 

            compiler.require(o.is_member(), "safe_union members must not be static"); 
            compiler.require(is_copy_constructible_v<o.type$> 

                               && is_copy_assignable_v<o.type$>, 

                             "safe_union members must be copy " 

                             "constructible and copy assignable"); 

        } 

        safe_union.variables().clear(); // now replace the previous instance vars 
    } 

    alignas(align) byte data[size]; //   with a data buffer 

    int active;     //   and a discriminant 

    safe_union() { active = 0; }  // default constructor 

    void clear() {    // cleanup goes here 

        switch (active) { 

            constexpr { 

                for (const auto& o : objects) // destroy the active object 

                    -> { case o.num$: o.name$.~(o.type.name$)(); } 

        } 

        active = 0; 

    } 

    ~safe_union() { clear(); }  // destructor just invokes cleanup 

    safe_union(const safe_union& that)  // copy construction 

        : active{that.active} 

    { 

        switch (that.active) { 

            constexpr { 
                for (auto o : objects) // just copy the active member 

                    -> { case o.num$: o.name$() = that.(o.name)$(); } 

            }     // via its accessor, defined next below 

        } 

    } 

    safe_union& operator=(const safe_union& that) { // copy assignment 

        clear();    // to keep the code simple for now, 

        active = that.active;  //   destroy-and-construct even if the 

        switch (that.active) {  //   same member is active 

            constexpr { 



P0707 R0: Metaclasses – Sutter  30 

                for (auto o : objects) // just copy the active member 

                    -> { case o.num$: o.name$() = that.(o.name)$(); } 

            }     // via its accessor, defined next below 
        } 

    } 

    constexpr { 

    for (auto o : objects) -> {  // for each original member 

        auto o.name$() {   // generate an accessor function  

            assert (active==o.num); // assert that the member is active 
            return (o.type$&)data; 

        }     // and cast data to the appropriate type& 

        void operator=(o.type$ value){ // generate a value-set function 

            if (active==o.num)  

                o.name$() = value; // if the member is active, just set it 

            else { 
                clear();   // otherwise, clean up the active member 

                active = o.num;  //   and construct a new one 

                try { new (&data[0]) o.type.name$(value); } 

                catch { active = 0; } // failure to construct implies empty 

            } 

        } 

        bool is_(o.name)$() {  // generate an is-active query function 

            return (active==o.num); 

        } 

    } 

    } 

    bool operator==(const safe_union& that) const { 
       // (we’ll get != from ‘comparable_value’) 

        if (active != that.active) // different active members => not equal 

            return false; 

        if (active == 0)   // both empty => equal 

            return true; 

        switch (that.active) { 
            constexpr { 

                for (auto o : objects) // else just compare the active member 

                    -> { case o.num$: return o.name$() == that.(o.name)$(); } 

            } 

        } 

    } 

    bool is_empty() { return active == 0; } 

}; 

 

 



P0707 R0: Metaclasses – Sutter  31 

Here is code that defines and uses a sample safe_union. The usage syntax is identical to C and C++17. 

safe_union U { 

    int i; 

    string s; 

    map<string, vector<document>> document_map; 

}; 

Notes I would be interested in expressing variant in this syntax, because I think it’s better than writing 

variant<int, string, map<string, vector<document>>> for several reasons, including: 

 it’s easier to read, using the same syntax as built-in unions; 

 we can give U a type that is distinct from the type of other unions even if their members are of 

the same type; 

 we get to give nice names to the members, including to access them (instead of get<0>). 

 That we can implement union as a library and even get the same union definition syntax for mem-

bers is only possible because of Dennis Ritchie’s consistent design choice: When he designed C, he 

wisely used the same syntax for writing the members of a struct and a union. He could instead 

have gratuitously used a different syntax just because they were (then) different things, but he 

didn’t, and we continue to benefit from that design consistency. Thanks again, Dr. Ritchie. 

U u; 

u = “xyzzy”;      // constructs a string 

assert (u.is_s()); 

cout << u.s() << endl;    // ok 

Note I love today’s std::variant, but I wouldn’t miss writing the anonymous and pointy get<0>. 

u = map<string, vector<document>>;  // destroys string, moves in map 

assert (u.is_document_map()); 

use(u.document_map());    // ok 

u.clear();      // destroys the map 

assert (u.is_empty()); 

3.11 namespace_class 
 “In this respect, namespaces behave exactly like classes.”—[Stroustrup, D&E §17.4.2] 

“It has been suggested that a namespace should be a kind of class. I don’t think that is a good idea be-
cause many class facilities exist exclusively to support the notion of a class being a user-defined type. 

For example, facilities for defining the creation and manipulation of objects of that type has little to do 
with scope issues. The opposite, that a class is a kind of namespace, seems almost obviously true. A 

class is a namespace in the sense that all operations supported for namespaces can be applied with the 
same meaning to a class unless the operation is explicitly prohibited for classes. This implies simplicity 

and generality, while minimizing implementation effort.”—[Stroustrup, D&E §17.5] 

“Functions not intended for use by applications are in boost::math::detail.”—[Boost.Math] 

A namespace_class is a class with only static members, and static public members by default. 

http://www.boost.org/doc/libs/1_58_0/libs/math/doc/html/math_toolkit/namespaces.html


P0707 R0: Metaclasses – Sutter  32 

First, let’s define a separately useful reopenable metaclass – any type that does not define nonstatic data mem-

bers can be treated as incomplete and reopenable so that a subsequent declaration can add new things to the 

type members: 

$class reopenable { 

    constexpr { 

        compiler.require($reopenable.member_variables().empty(), 
                         "a reopenable type cannot have member variables"); 

        $reopenable.make_reopenable(); 

    } 

}; 

A namespace_class is reopenable: 

$class namespace_class : reopenable { 

    constexpr { 

        for (auto m : $reopenable.members()) { 

            if (!m.has_access ()) m.make_public(); 

            if (!m.has_storage()) m.make_static(); 

            compiler.require(m.is_static(), "namespace_class members must be static"); 

        } 

    } 

}; 

These can be used to write types that match that metaclass. Using Boost’s Math library as an example: 

C++17 style Using a metaclass 
 

namespace boost { 
namespace math { 
 
    // public contents of boost::math 
 
    namespace detail { 
    // implementation details of boost::math 
    // go here; function call chains go in/out 
    // of this nested namespace, and calls to 
    // detail:: must be using’d or qualified 
    } 
} 
} 

 

namespace_class boost { 
namespace_class math { 
 
    // public contents of boost::math 
 
private: 
    // implementation details of boost::math 
    // go here and can be called normally 
}; 
}; 

 

Notes In C++11, we wanted to add a more class-like enum into the language, and called it enum class. This 

has been a success, and we encourage people to use it. Now we have an opportunity to give a simi-

lar upgrade to namespaces, but this time without having to hardwire a new enum class-like type 

into the core language and plumb it through the core standardese. 

 This implementation of the namespace concept applies generality to enable greater expressiveness 

without loss of functionality or usability. Note that this intentionally allows a namespace_class to 

naturally have private members, which can replace today’s hand-coded namespace detail idiom. 



P0707 R0: Metaclasses – Sutter  33 

4 Applying metaclasses: Qt moc and C++/WinRT 
Today, C++ framework vendors are forced resort to language extensions that require side compilers/languages  

and/or extended C++ compilers/languages (in essence, tightly or loosely integrated code generators) only be-

cause C++ cannot express everything they need. Some prominent current examples are: 

• Qt moc (meta-object compiler) (see Figure 1): One of Qt’s most common FAQs is “why do you have a 

meta-object compiler instead of just using C++?” 2  This issue is contentious and divisive; it has caused 

spawning forks like CopperSpice and creating projects like Verdigris, which are largely motivated by try-

ing to eliminating the moc extensions and compiler (Verdigris was created by the Qt moc maintainer). 

• Multiple attempts at Windows COM or WinRT bindings, lately C++/CX (of which I led the design) and 

its in-progress replacement C++/WinRT (see Figures 2 and 3): The most common FAQ about C++/CX 

was “why all these language extensions instead of just using C++?” 3  Again the issue is contentious and 

divisive: C++/WinRT exists because its designer disliked C++/CX’s reliance on language extensions and 

set out to show it could be done as just a C++ library; he created an approach that works for consuming 

WinRT types, but still has to resort to extensions to be able to express (author) the types, only the ex-

tensions are in a separate .IDL file instead of inline in the C++ source. 

The side/extended languages and compilers exist to express things that C++ cannot express sufficiently today: 

• Qt has to express signals/slots, properties, and run-time metadata baked into the executable. 

• C++/CX and C++/WinRT has to express delegates/events, properties, and run-time metadata in a sepa-

rate .winmd file. 

Note The C++ static reflection proposal by itself helps the run-time metadata issue, but not the others. For 

example, see “Can Qt’s moc be replaced by C++ reflection?” in 2014 by the Qt moc maintainer. 

There are two aspects, illustrated in Figures 1-3: 

• Side/extended language: The extra information has to go into source code somewhere. The two main 

choices are: (1) Nonportable extensions in the C++ source code; this is what Qt and C++/CX do, using 

macros and compiler extensions respectively. (2) A side language and source file, which requires a more 

complex build model with a second compiler and requires users to maintain parallel source files consist-

ently (by writing in the extended language as the primarily language and generating C++ code, or by 

hand synchronization); this is what classic COM and C++/WinRT do. 

• Side/extended compiler: The extra processing has to go into a compiler somewhere. The same choices 

are: (1) Put it in nonportable extensions in each C++ compiler; this is what C++/CX does. (2) Put it in a 

side compiler and use a more complex build model; this is what Qt and classic COM and C++/WinRT do. 

                                                           
2 The Qt site devotes multiple pages to this. For example, see: 

• “Moc myths debunked / … you are not writing real C++” 

• “Why Does Qt Use Moc for Signals and Slots” 

• “Why Doesn’t Qt Use Templates for Signals and Slots?” 

• “Can Qt’s moc be replaced by C++ reflection?” 

3 C++/CX ended up largely following the design of C++/CLI, not by intention (in fact, we consciously tried not to follow it) but 
because both had very similar design constraints and forces in their bindings to COM and .NET respectively, which led to 
similar design solutions. We would have loved nothing better than to do it all in C++, but could not. Still, the “all these lan-
guage extensions” issue with C++/CLI was contentious enough that I had to write “A Design Rationale for C++/CLI” in 2006 
to document the rationale, which is about the C++/CLI binding to CLI (.NET) but applies essentially point-for-point to the 
C++/CX binding to COM and WinRT. 

http://doc.qt.io/qt-4.8/moc.html
http://www.copperspice.com/
https://woboq.com/blog/verdigris-qt-without-moc.html
https://msdn.microsoft.com/en-us/library/hh699871.aspx?f=255&MSPPError=-2147217396
https://github.com/Microsoft/cppwinrt
https://woboq.com/blog/reflection-in-cpp-and-qt-moc.html
https://woboq.com/blog/moc-myths.html
http://doc.qt.io/qt-5/why-moc.html
http://doc.qt.io/qt-4.8/templates.html
https://woboq.com/blog/reflection-in-cpp-and-qt-moc.html
https://en.wikipedia.org/wiki/C%2B%2B/CLI
http://www.gotw.ca/publications/C++CLIRationale.pdf


P0707 R0: Metaclasses – Sutter  34 

 

Figure 2: Qt extended language + side compiler – build model vs. this proposal 

 

Figure 3: C++/CX extended language + extended compiler – build model vs. this proposal 

 

Figure 4: C++/WinRT side language + side compiler – build model vs. this proposal 



P0707 R0: Metaclasses – Sutter  35 

4.1 Qt moc  metaclasses (sketch) 
This section describes how Qt moc could be replaced by metaclasses. 

The approach centers on writing metaclasses to encapsulate Qt conventions. In particular: 

Feature Qt moc style Proposed 

Qt class : public QObject 

Q_OBJECT macro 

QClass metaclass 

 

Signals and slots signals: access specifier 

slots: access specifier 

Both are grammar extensions 

qt::signal type 

qt::slot type 

No grammar extensions 

Properties Q_PROPERTY macro property<> metaclass 

(note: not necessarily specific to Qt) 

Metadata Generated by moc compiler Generated in QClass metaclass code, or 
separately by reflection 

 

Consider this example, which uses a simple property for which it’s easy to provide a default (as do C# and other 

languages), and a simple signal (outbound event notification) and slot (inbound event notification): 

Qt moc style This paper (proposed) 
 

class MyClass : public QObject { 
    Q_OBJECT 
 

public: 
    MyClass( QObject* parent = 0 ); 
 

    Q_PROPERTY(int value READ get_value WRITE set_value) 
    int  get_value() const { return value; } 
    void set_value(int v)  { value = v; } 
private: 
    int value; 
 

signals: 
    void mySignal(); 
public slots: 
    void mySlot(); 
}; 

 

QClass MyClass { 
    property<int> value { }; 
    signal mySignal(); 
    slot mySlot(); 
}; 

 

4.2 QClass metaclass 
QClass is a metaclass that implements the following requirements and defaults: 

• Implicitly inherits publicly from QObject. 

• Generates a constructor that takes QObject* with a default value of nullptr. 

• Performs all the processing currently performed by the QOBJECT macro. 

• For each nested type declared property<T> (see below), “inline” the nested type by moving its data 

member(s) and function(s) into the scope of this class. 



P0707 R0: Metaclasses – Sutter  36 

• For each function whose return type is qt::signal<T> (see below), change its return type to T and treat 

it as a signal function. 

• For each function whose return type is qt::slot<T> (see below), change its return type to T and treat it 

as a slot function. 

• Performs all the processing currently performed by the Q_ENUMS macro to every nested enum type. 

• (etc. for other Q_ macros) 

• Apply any Qt class rules (e.g., on accessibility of signals and slots). 

Note These techniques allow adding “language extensions” that don’t change the C++ grammar: 

 (1) Using a well-known marker class type as a contextual keyword. By using a well-known type 

such as signal or slot as a marker type (for a variable, or a function parameter or return type), a 

metaclass like QClass can assign special semantics and processing to that type when it encounters it 

in the specially recognized position, essentially turning the type into a contextual keyword but with-

out disturbing the C++ grammar. (The same can be done with variable and function names.) 

 (2) Using a well-known marker metaclass as a contextual keyword and abstraction. For property, 

we need a little more because it is intended to be an abstraction encapsulating multiple compo-

nents. Because the C++ grammar already allows nested abstractions (classes), and we are now add-

ing metaclasses, we can simply use a well-known metaclass such as property to define a nested 

class that represents the abstraction. (Processing that is reusable in other places the nested type’s 

metaclass (e.g., property) is useful can be done inside that metaclass, and the combining or post-

processing to integrate it into the enclosing QClass can be done in QClass.) 

 signal and slot types 
The types qt::signal and qt::slot are ordinary empty types that do nothing on their own, but are used as 

markers recognized by the QClass metaclass. 

template<class Ret = void> class signal { }; 

template<class Ret = void> class slot { }; 

These are templates because Qt has some support for non-void signal and slot return types. A non-void return 

type can be specified by the template parameter: 

signal<int> mySignalThatReturnsInt(); 

slot<Priority> mySlotThatReturnsPriority(); 

Otherwise, a C++17 deduction guide offers nice default syntax without < > brackets, as in this section’s example: 

signal mySignal();  // signal<void> 

slot mySlot();   // signal<void> 

Note Qt itself rarely makes use of non-void return types in signal-slot calls. However, slots can also be 

called like normal functions, so they can return values. For now I’ll leave in this generality of using a 

template for the return type intact for both signals and slots as it helps to underscore the flexibility 

that is available with metaclasses; if the generality is not needed for signals, it’s easily removed. 

 property metaclass 
A Qt “property” is modeled as a nested class defined using the metaclass template qt::property: 



P0707 R0: Metaclasses – Sutter  37 

template<class T> 

$class property<T> { 

    // ... 
}; 

This metaclass implements the following requirements and defaults: 

• Each function’s name must begin with “get” or “set.” 

• T must be copyable. 

• Apply any other Qt property rules. 

Note We could design a more general “property” that could be standardized and used both here and in 

the following C++/WinRT section. For now this just illustrating how to create a binding to Qt. 

For convenience, an empty property that has no user-declared data member or functions: 

property<T> xxx { }; 

generates the following if T is default-constructible: 

• a data member named xxx of type T; 

• a “get” function T get_xxx() { return value; }; and 

• if T is not const, a “set” function void set_xxx(const T& value) { xxx = value; };. 

A property can have customizable contents, for example have a different internal type (if Qt allows this): 

property<string> blob { 

    DBQuery q; 

    string get_blob() const          { return q.run(“SELECT blob_field FROM /*...*/”); } 

    void   set_blob(const string& s) { q.run(“UPDATE blob_field /*... using s ...*/”); } 

}; 

After the property metaclass has been run to define the property’s data and functions as a nested class, the 

QClass metaclass then “inlines” the nested class into the main class so that its data and functions can be used 

normally by other class members and users. 

Note The above shows how to support the basic Q_PROPERTY options of MEMBER, READ, and WRITE. To fully 

support Q_PROPERTY semantics, qt::property should also support the other options – RESET, NO-

TIFY, DESIGNABLE, etc. 

 Generating metadata 
Finally, generating metadata is largely enabled by just the reflection proposal on its own, but aided in accuracy 

by metaclasses. Because we are going to automate Qt conventions using metaclasses such as QClass, the source 

code directly identifies exactly which types are Qt types. 

• As each such type is defined by applying the metaclass, the metaclass’s code can use reflection at the 

time each QClass is processed to generate compile-time data structures for metadata. 

• Alternatively, a generate_metadata function could reflect over the whole program to identify and in-

spect Qt types and generate metadata only for those; that function can be built and invoked as a sepa-

rate executable. This keeps the metadata generator code outside the metaclass code, if that is desirable. 

In both cases, all processing is done inside the C++ program and C++ compiler. 


