
March 2017 Attribute to mark unreachable code P0627R0

Page | 1

Title: Attribute to mark unreachable code

Document Number: P0627R0

Date: 2017-03-14

Project: ISO JTC1/SC22/WG21: Programming Language C++

Audience: Evolution Working Group (EWG)

Reply-to: Melissa Mears < >

1. Introduction

This proposal introduces a new standard attribute, [[unreachable]], for marking statements as being

known by the programmer to be unreachable.

2. Motivation and Scope

Compilers cannot know every possible situation in which code may execute, thanks to the Halting

Problem. There will always exist programs in which a compiler cannot determine that a situation is

impossible.

When the programmer knows that a situation is impossible, but it is not obvious to the compiler, it is

helpful to be able to tell the compiler to avoid runtime checking for a case that is impossible.

For example, a common situation is that a switch statement handles all possible situations, but it's not

obvious to the compiler. Given this example switch statement:

void do_something(int number_that_is_only_0_1_2_or_3)

{

 switch (number_that_is_only_0_1_2_or_3)

 {

 case 0:

 case 2:

 handle_0_or_2();

 break;

 case 1:

 handle_1();

 break;

 case 3:

 handle_3();

 break;

 }

}

…a compiler might generate object code like this (using Intel-syntax x86-64 as an example):

March 2017 Attribute to mark unreachable code P0627R0

Page | 2

cmp eax, 4

jae skip_switch

lea rcx, [jump_table]

jmp qword [rcx + rax*8]

If, however, we had a way to tell the compiler that no other value is possible, the compiler could omit the

first two instructions, the ones checking for a value that is not 0 1 2 or 3.

Another case in which it would be nice to tell a compiler that something cannot happen is with non-

obvious cases of a function never returning. An example from POSIX could be the following:

[[noreturn]] void kill_self()

{

 kill(getpid(), SIGKILL);

}

Such code cannot fail or return, but generally, a compiler will issue a warning that kill_self might

return despite its [[noreturn]] attribute.

2.1 Existing implementations

2.1.1 POSIX world

GCC, Clang and Intel C++ all support a directive function named __builtin_unreachable().

Calling this “function” tells these compilers that that location in the source code cannot be reached. Thus,

the do_something and kill_self functions from section 2 above would appear as follows:

void do_something(int number_that_is_only_0_1_2_or_3)

{

 switch (number_that_is_only_0_1_2_or_3)

 {

 case 0:

 case 2:

 handle_0_or_2();

 break;

 case 1:

 handle_1();

 break;

 case 3:

 handle_3();

 break;

 default:

 __builtin_unreachable();

 }

}

March 2017 Attribute to mark unreachable code P0627R0

Page | 3

[[noreturn]] void kill_self()

{

 kill(getpid(), SIGKILL);

 __builtin_unreachable();

}

2.1.2 Windows world

Microsoft Visual C++ doesn't have such a directive, but it has an alternative that can produce the same

effect. Visual C++ has __assume(E), which directs the compiler to assume that arbitrary Boolean

expression E is true when execution reaches that location.

If one uses the contradictory statement __assume(false), Visual C++ assumes that execution cannot

reach this point, much like the behavior of __builtin_unreachable().

2.1.3 Other implementations

In some implementations, it is possible to accomplish unreachability assumptions by intentionally causing

undefined behavior, such as intentionally dividing by zero in the unreachable case. However, the author

feels that that should not be encouraged. Instead, we’ll make something that directly is undefined

behavior in a standard manner.

3. Design Decisions

3.1 Form of the directive

The major compilers all support a similar useful feature, and it would be nice to have a standard way to

accomplish this task.

One possibility is creating a function named std::unreachable(), but this seems awkward, and has

disadvantages compared to using an attribute. It would have to use compiler magic to achieve the desired

warning suppression from the kill_self example.

An attribute is an interesting solution: [[unreachable]]. Since being unreachable is an aspect of code

flow, being attached to a statement seems the most appropriate. Naturally, in practice,

[[unreachable]] would be attached to a null statement, which this proposal requires.

The author sees the __assume(E) design (__assume(false)) and the similar Contract-Based

Programming proposal as undesirable for few reasons that are covered in the next section.

3.2 Comparison with Contract-Based Programming proposal (P0380/P0542)

A proposal for adding contract-based programming to C++ is proposed by paper P0380 and formalized by

paper P0542. The contracts proposal turns out to be a superset of this proposal’s [[unreachable]]: the

closest contracts equivalent to [[unreachable]] is [[assert axiom: false]].

March 2017 Attribute to mark unreachable code P0627R0

Page | 4

[[assert: E]] means that the given expression E must be true at a certain point. The axiom

“checking level” means that no runtime checking is to be done. [[assert axiom: E]] is very similar

to the Visual C++ extension __assume(E).

The author believes that utilizing the contract-based programming proposal, or Visual C++’s __assume,

instead of a separate [[unreachable]] is undesirable for the following reasons:

• The contract specification is incomplete, and it will be a while before it is ready.

• [[assert axiom: false]] doesn’t convey to programmers that that statement is unreachable

like [[unreachable]] does. It looks like, and is, a logical contradiction, and so is awkward to

comprehend. [[unreachable]] is clear in its meaning.

• Finally, the most problematic aspect the author sees is that the contracts proposal does not state

that the effect of failing an [[assert axiom]] is undefined behavior. [[unreachable]]

denoting undefined behavior at the point is a desirable feature (see next section).

3.3 Definition

What is the best way to define the attribute's effect? The author feels that the best way is to make the

behavior of a statement with [[unreachable]] be undefined. There are several reasons:

• [[unreachable]] causing undefined behavior means that the Standard would not prescribe any

particular action, leaving open many possible implementation actions.

• Some compilers already associate being unreachable to undefined behavior. Clang’s

documentation states that __builtin_unreachable() “has completely undefined behavior”.

• Optimizing under the assumption that a statement is unreachable, and thus having unpredictable

behavior if the statement is in fact reachable, falls naturally under "undefined behavior".

• An alternative for implementations would be to issue a trap if an [[unreachable]] statement

is executed. This could be used in "debug builds", for example. Such a trap falls under

"undefined behavior".

• [[unreachable]] is ignorable. An implementation that does not understand

[[unreachable]] and thus ignores it (as required by N4618 [dcl.attr.grammar]/6) would

actually be a correct implementation of [[unreachable]], because "do nothing" also falls

under the purview of "undefined behavior".

• Being undefined behavior implies the answer to the question of what happens if a constexpr

function executes an [[unreachable]] statement: it's not a constant-expression, by (N4618)

[expr.const]/2.6 and [defns.undefined].

March 2017 Attribute to mark unreachable code P0627R0

Page | 5

4. Impact on the Standard

This proposal is purely a new attribute. Existing code does not use this attribute. This proposal has no

impact on the Standard Library.

As noted above in 3.2, if an implementation does not recognize the new attribute [[unreachable]],

and ignores it as required by the existing draft Standard, it is in fact already a correct implementation.

5. Impact on Existing Implementations

The major implementations already have support for this feature in a different form, so modifications to

support [[unreachable]] should be simple.

Alternatives include continuing to ignore [[unreachable]] or to turn it into a trap.

6. Proposed Wording

The proposed Standardese wording below is relative to N4618. All portions are additions.

Add a new section to 7.6 ([dcl.attr]):

7.6.X Unreachable attribute [dcl.attr.unreachable]

1 The attribute-token unreachable may be applied to a null statement (6.2); such a statement is an

unreachable statement. The attribute-token unreachable shall appear at most once in each attribute-list

and no attribute-argument-clause shall be present.

2 The behavior of executing such an unreachable statement is undefined. [Note: The unreachable

attribute is intended as a hint to the implementation that execution cannot reach the statement so marked.

An implementation may use this hint to optimize under this assumption or to trap if the statement indeed

executes, among other alternatives. — end note]

3 [Note: Implementations are encouraged not to emit a warning regarding undefined behavior along the

code path of an unreachable statement, such as from reaching the end of a function returning other than

void or the end of a function marked [[noreturn]] (7.6.Y). — end note]

March 2017 Attribute to mark unreachable code P0627R0

Page | 6

4 [Example:

enum { sunday, monday, tuesday, wednesday, thursday, friday, saturday };

bool is_weekday(int day) {

 switch (day) {

 case sunday: case saturday:

 return false;

 case monday: case tuesday: case wednesday: case thursday: case friday:

 return true;

 default:

 [[unreachable]]; // implementations are encouraged not to emit a warning that this

 // code path fails to return a value

 }

}

void f() {

 bool a = is_weekday(tuesday); // OK

 bool b = is_weekday(10); // undefined behavior: [[unreachable]] statement executed

 if (false) {

 [[unreachable]] a = a; // ill-formed: statement is not a null statement (6.2)

 }

}

— end example]

7. Feature-Testing Macro

For the purposes of SG10 SD-6, __has_cpp_attribute(unreachable) suffices.

8. Open Questions

• Is is_weekday an appropriate example for an ISO standard? The meaning of “weekday” is

locale-specific. Should this be replaced with a less ambiguous example?

• Does the Standardese need to state that [[unreachable]] attached to a non-null statement is

ill-formed? [[fallthrough]]’s definition does not explicitly state this, but it does not give an

example of this, either.

• The wording “such a” before “unreachable statement” is because “unreachable statement” could

be interpreted to mean a different case than just [[unreachable]]. Is this needed?

March 2017 Attribute to mark unreachable code P0627R0

Page | 7

9. References

• N4618 Working Draft, Standard for Programming Language C++:

http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/n4618.pdf

• November 2015 std-proposals mailing list discussion thread started by Nicol Bolas:

https://groups.google.com/a/isocpp.org/forum/#!searchin/std-proposals/unreachable/std-

proposals/f1G45z3dMp0/04qGH9X0FQAJ

• “A Contract Design” proposal for defining contractual programming in C++:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0542r0.html

• GCC documentation on __builtin_unreachable:

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html#index-

_005f_005fbuiltin_005funreachable

• Clang documentation on __builtin_unreachable:

https://clang.llvm.org/docs/LanguageExtensions.html#builtin-unreachable

• Visual C++ documentation on __assume:

https://msdn.microsoft.com/en-us/library/1b3fsfxw.aspx

10. Acknowledgements

The author would like to recognize the contributions of the members of the std-proposals discussion

threads on the subject, particularly Nicol Bolas for starting the thread with the idea, Richard Smith for

pointing out how ignoring the attribute is a correct implementation, and Thiago Macieira for noting other

possible compiler reactions.

11. Revision Log

2017-03-08 – First draft as a PDF.

2017-03-09 – Minor wording changes; thanks to Magnus Fromreide for a correction.

2017-03-10 – Document number assigned. Added section comparing to contract programming.

2017-03-13 – Updated comparison with contracts after getting response from Prof. J. Daniel Garcia.

2017-03-14 – First submission.

