
Document Number: P0609R1

Date: 2017-09-14

Author: Aaron Ballman <aaron@aaronballman.com>

Audience: Evolution Working Group

Attributes for Structured Bindings
Motivation
We added the ability to write structured binding declarations in C++17. The optional attribute-specifier-

seq in such a declaration appertains to the hidden variable declared by the structured binding

declaration. Despite the variable being hidden, this is still useful functionality (for instance, it allows the

programmer to specify the alignment of the structured binding declaration itself, which may allow for

useful compiler optimizations when loading from an array).

However, there is no way to specify attributes that appertain to the individual structured bindings. It is

desirable to allow vendor-specific attributes to appertain to these bindings for attributes that would

otherwise appertain to variables to enable better diagnostics, especially through static analysis. For

instance, some implementations support thread-safety attributes (guarded_by, et al) that denote a

variable requires a particular locking primitive to be held before accessing the variable. Other

implementations support an annotation which denotes an object with an array of char or pointer to

char type does not necessarily contain a terminating null character (nonstring). Given the prevalence

of vendor-specific attributes, it is likely that other motivating use cases currently exist.

I propose to allow optional attributes for each of the introduced structured bindings, as in this example:

auto g() {

 auto [a, b [[vendor::attribute]], c] = f();

 return a + c;

}

While this may generate an overabundance of square brackets in a declaration, the syntax is consistent

with our other treatments of attributes in declarations.

Proposed Wording
Modify [dcl.dcl]p1:

...
attributed-identifier-list:
 identifier attribute-specifier-seqopt
 attributed-identifier-list , identifier attribute-specifier-seqopt

simple-declaration:
 decl-specifier-seq init-declarator-listopt ;

 attribute-specifier-seq decl-specifier-seq init-declarator-list ;

 attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt [attributed-identifier-list] initializer ;

...

Modify [dcl.dcl]p8:

A simple-declaration with an attributed-identifier-list is called a structured binding declaration (11.5).

The decl-specifier-seq shall contain only the type-specifier auto (10.1.7.4) and cv-qualifiers. The initializer

shall be of the form “= assignment-expression”, of the form “{ assignment-expression }”, or of the form

“(assignment-expression)”, where the assignment-expression is of array or non-union class type.

Modify [dcl.struct.bind]p1:

A structured binding declaration introduces the identifiers v0, v1, v2, ... of the attributed-identifier-list as
names (6.3.1), called structured bindings. The optional attribute-specifier-seq of an attributed-identifier
from the attributed-identifier-list appertains to the introduced structured binding. Let cv denote the cv-
qualifiers in the decl-specifier-seq. First, a variable with a unique name e is introduced. If the
assignment-expression in the initializer has array type A and no ref-qualifier is present, e has type cv A
and each element is copy-initialized or direct-initialized from the corresponding element of the
assignment-expression as specified by the form of the initializer. Otherwise, e is defined as-if by

attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt e initializer ;
where the declaration is never interpreted as a function declaration and the parts of the declaration

other than the declarator-id are taken from the corresponding structured binding declaration. The type

of the id-expression e is called E. [Note: E is never a reference type (Clause 5). — end note]

Modify p2:

If E is an array type with element type T, the number of elements in the attributed-identifier-list shall be

equal to the number of elements of E. ...

Modify p3:

Otherwise, if the qualified-id std::tuple_size<E> names a complete type, the expression

std::tuple_size<E>::value shall be a well-formed integral constant expression and the number of

elements in the attributed-identifier-list shall be equal to the value of that expression. ...

Modify p4:

Otherwise, all of E’s non-static data members shall be public direct members of E or of the same

unambiguous public base class of E, E shall not have an anonymous union member, and the number of

elements in the attributed-identifier-list shall be equal to the number of non-static data members of E.

Acknowledgements
Thanks to Richard Smith for reviewing this paper.

