
enable_if vs. requires: A Case Study

Document #: WG21 P0552R0
Date: 2017-02-01
Project: JTC1.22.32 Programming Language C++
Audience: WG21
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Discussion 2

2.1 A traditional swap declaration . 2
2.2 A modern swap declaration . . . 3
2.3 They’re not quite the same . . . 3

3 Summary and conclusion 4
4 Acknowledgments 4
5 Bibliography 4
6 Document history 5

Abstract

Recent experimentation compared two C++ implementations of std::swap. One used now-
common enable_if technology, while the other used modern constraints-based (requires)
technology. The experiment revealed an unexpected and somewhat subtle difference in their be-
havior. This paper presents this case study with the hope of at least slightly easing programmers’
transitions to the forthcoming world of C++ programming with constraints.

There are no constraints on the human mind, no walls around the human spirit,
no barriers to our progress except those we ourselves erect.

— RONALD REAGAN

Software constraints are only confining if you use them for what they’re intended
to be used for.

— DAVID BYRNE

Instead of freaking out about these constraints, embrace them. Let them guide
you. Constraints drive innovation and force focus. Instead of trying to remove
them, use them to your advantage.

— JASON FRIED

1 Introduction

enable_if1 has for more than a decade been widely used as an idiomatic library approach to
allow programmers easier access to explicit overload set management 2 and other applications of
SFINAE [JWHL03, JWL03]. However, when considered as a programming technique, the idiom has
significant limitations. For example, it typically requires a template context and, even then, it can
be difficult or impossible to apply when a constructor is involved.

Such difficulties were eased somewhat with the introduction of expression SFINAE [N2634]
into C++11. This expansion of the rules allowed enable_if constructs (as well as the then-new

Copyright c© 2017 by Walter E. Brown. All rights reserved.
1See Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine: “enable_if.” 2003. http://www.boost.org/doc/libs/

1_45_0/libs/utility/enable_if.html. Retrieved 2016–11–26.
2See https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/enable-if. 2014–01–13. Retrieved 2016–11–26.

1

mailto:webrown.cpp@gmail.com
http://www.boost.org/doc/libs/1_45_0/libs/utility/enable_if.html
http://www.boost.org/doc/libs/1_45_0/libs/utility/enable_if.html
https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/enable-if

2 P0552R0: enable_if vs. requires: A Case Study

decltype, etc.) to appear in more places with the expectation that, when ill-formed, SFINAE would
be triggered and the offending potential instantiation would be (silently) discarded.

Quite properly, the Standard Library takes full advantage of such techniques, and has even
adopted stylized phrasing to indicate their intended use. The phrase “shall not participate
in overload resolution unless . . . ” normatively specifies to cognoscenti and other initiates the
intended application of SFINAE to the entity thus specified.

It is widely anticipated3 that the forthcoming introduction of Concepts Lite [N4553, TS19217]
into C++ will allow programmers to discard the prevailing coding styles based on expression
SFINAE, and to replace them with constraints applied via requires clauses or via their abbreviated
equivalents. While largely true, recent experimentation has revealed an additional and unfamiliar
consideration. In the next section, we will describe the circumstances leading to our unexpected
discovery, in the hope of forewarning other programmers of the impact of this new and intended,
but unfamiliar, behavior.

2 Discussion

As many of our WG21 colleagues know, we have been experimenting with reimplementations of
numerous selected Standard Library components, using the newest available C++ technology. To
ensure compliance with the Library’s specifications, we have been validating our new code using
established test cases from well-respected public and private sources. We recently encountered an
interesting and unexpected situation involving a test program (namely, is_swappable.pass.cpp,
from the libc++ code base) applied to private reimplementations of std::swap.

Among other specifications, the Standard Library states that swap “shall not participate in
overload resolution unless is_move_constructible_v<T> is true and is_move_assignable_
v<T> is true” ([utility.swap]/1). As described above, such phrasing intends that SFINAE is to apply
in order to remove the declaration whenever either given condition fails to hold.

In the following subsections, we present and discuss two solutions, one that is based on
enable_if technology, and the other that is based on a requires clause, i.e., based on con-
straints technology. Noting that each satisfactorily addresses the above swap specification, we
then describe the somewhat surprising differences in their behavior.

2.1 A traditional swap declaration
Traditional enable_if technology can be used to meet the swap specification cited above. In a
C++17 style, the corresponding swap declaration might look like this:

1 template< typename T >
2 enable_if_t< is_move_constructible_v<T> and is_move_assignable_v<T> >
3 swap(T&, T&) noexcept(is_nothrow_move_constructible_v<T>
4 and is_nothrow_move_assignable_v<T>
5);

Here, the enable_if (line 2) is in the position of swap’s return type. This leads to two possibilities:

1. When the stated condition holds, the (implicit) return type will be void and the resulting
viable declaration will be given due consideration during overload resolution.

2. When the condition does not hold, there will be no return type. This produces an ill-formed
declaration, but SFINAE ensures that no diagnostic is generated. Instead, non-viable as

3 For example, among the discussion at http://stackoverflow.com/questions/26513095/void-t-can-implement-
concepts, we find the question, “okay, are these ‘requires’ clauses you speak of . . . just dressed up enable_if . . . ?”
with two responses: (1) “Yes, I believe it’s just a very cool way to do SFINAE.” (2) “Yes, concepts lite basically dresses
up SFINAE.”

http://stackoverflow.com/questions/26513095/void-t-can-implement-concepts
http://stackoverflow.com/questions/26513095/void-t-can-implement-concepts

P0552R0: enable_if vs. requires: A Case Study 3

a candidate, the declaration will be silently discarded from further consideration during
overload resolution.

In both cases, the cited specification is satisfied.

2.2 A modern swap declaration
The following declaration uses a different approach to the same swap specification. In particular,
we employ a Concepts-Lite requires clause (line 2) as our vehicle to implement the required
SFINAE. This allows us to avoid contorting the return type, so we supply a simple void (line 3),
as the return type instead of the messier enable_if expression shown in the previous section.
We continue to use type traits rather than analogous concepts, as that is how the C++17 swap is
specified:

1 template< typename T >
2 requires is_move_constructible_v<T> and is_move_assignable_v<T>
3 void
4 swap(T&, T&) noexcept(is_nothrow_move_constructible_v<T>
5 and is_nothrow_move_assignable_v<T>
6);

Such a requires clause introduces a constraint on the declaration.

• A constraint must be satisfied (i.e., evaluate to true) for the corresponding declaration to
participate in overload resolution.

• When a constraint is not satisfied, its corresponding declaration is considered non-viable and
(by the usual SFINAE rules) is silently removed from further consideration during overload
resolution.

Again, both cases meet swap’s specification.

2.3 They’re not quite the same
From a SFINAE perspective, the two programming techniques outlined above achieve the same
goal, and so seem functionally identical. But there is a further consideration that produces an
intended, yet somewhat subtle, difference during overload resolution.

According to [N4553], the use of constraints, such as via a requires clause, “introduces [a
new] criterion for determining if a candidate is viable.” Specifically, “for a function to be viable, if
it has associated constraints, those constraints shall be satisfied” ([over.match.viable]/3). Further,
“partial ordering selects the more constrained template” ([temp.func.order]/2). The net effect of
these added Concepts-Lite specifications is that “You potentially change overload resolutions every
time you add constrained overloads [to] a set containing [only] unconstrained templates with
equivalent types.”4

In our specific case, this new behavior unexpectedly manifested during an experiment in
which we reimplemented std::swap and the assorted swappable type traits. When tested against
is_swappable.pass.cpp, from the libc++ code base, our enable_if-based declaration (§2.1)
passed, but our requires-based declaration (§2.2) failed the test!

To understand the difference, let’s inspect one of the test’s details. Among several other corner
cases probed by the test, we find the following declaration and subsequent assertion (both excerpts
lightly reformatted):

4Andrew Sutton: “Re: Requires vs enable_if.” Personal communication, 2016–11–26.

4 P0552R0: enable_if vs. requires: A Case Study

1 namespace MyNS2 {
2 struct AmbiguousSwap { };
3 template< class T > void swap(T&, T&) { }
4 } // end namespace MyNS2
5 · · ·
6 // test that a swap with ambiguous overloads is handled correctly.
7 static_assert(! std::is_swappable<MyNS2::AmbiguousSwap>::value, "");

Note the sense of the assertion: the AmbiguousSwap type is claimed to be non-swappable in
order to pass testing. This is due to a deliberately-introduced ambiguity: the declaration of
MyNS2::swap was crafted to correspond to the C++17 Library’s declaration of std::swap. Name
lookup will find both overloads: std::swap is found via ordinary unqualified name lookup, and
MyNS2::swap is found via ADL. Since both are viable and neither is more specialized than the
other, the ambiguity is detected and the test passes.

However, when compiled with a constrained definition of std::swap, there is a new consider-
ation, and so the situation is subtly different. In particular, while name lookup is unchanged,
the updated std::swap is now considered more constrained5 than MyNS2::swap. Therefore, as
cited above, overload resolution will now unambiguously choose that more constrained candidate
as the “best viable function.” Consequently, (a) there is no longer any ambiguity about invoking
swap with arguments of type MyNS2::AmbiguousSwap, (b) the is_swappable trait now reports
that that type is swappable, and (c) the test, coded to expect ambiguity, now no longer passes.

3 Summary and conclusion

The moral of the story is that constraints and requires clauses are more — some would say far
more — than just a core language solution for the ugliness of enable_if. Even using no defined
concepts, which are constraints’ raison d’être, requires clauses bring with them an additional
set of rules for function overloading, and we programmers must be cognizant of those new rules
in our coding.

Put another way, whether expressed via a requires clause or via any equivalent shorter form,
language-level constraints become an integral part of a function’s declaration. Traditional function
declarations, not constrained in this way, just aren’t the same.

Perhaps we should have not been surprised. But we were, and are therefore presenting this
case study with the hope of at least slightly easing programmers’ transitions to the forthcoming
world of C++ programming with constraints.

4 Acknowledgments

We gratefully acknowledge the insights provided by Casey Carter, Eric Niebler, and Andrew Sutton;
thank you, gentlemen. Thanks also for their thoughtful reviews to Oliver Rosten and the other
readers of this paper’s pre-publication drafts.

5 Bibliography

[JWHL03] Jaakko Järvi, Jeremiah Willcock, Howard Hinnant, and Andrew Lumsdaine: “Function over-
loading based on arbitrary properties of types.” C++ Users Journal, 21(6):25–32, June 2003.

5That is, std::swap is constrained, while MyNS2::swap is unconstrained. Therefore, the former is considered “more
constrained” than the latter.

P0552R0: enable_if vs. requires: A Case Study 5

[JWL03] Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine: “Concept-controlled polymorphism.”
In Frank Pfennig and Yannis Smaragdakis (eds): Generative Programming and Component Engi-
neering. LNCS, 2830: 228–244. Springer Verlag, September 2003.

[N2634] John Spicer and J. Stephen Adamczyk: “Solving the SFINAE problem for expressions.” ISO/IEC
JTC1/SC22/WG21 document 2634 (pre-Sophia mailing), 2008–05–14. http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2008/n2634.html.

[N4553] Andrew Sutton: “Working Draft, C++ Extension for Concepts.” ISO/IEC JTC1/SC22/WG21
document N4553 (post-Kona mailing), 2015–10–02. A pre-publication draft of [TS19217]. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4553.pdf.

[TS19217] International Standards Organization: “Information technology — Programming languages —
C++ Extensions for concepts.” Technical Specification ISO/IEC TS 19217:2015, 2015–11–15.
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=64031.

6 Document history

Version Date Changes

0 2017-02-01 • Published as P0552R0.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2634.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2634.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4553.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4553.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=64031

	Title
	Contents
	Abstract
	1 Introduction
	2 Discussion
	2.1 A traditional swap declaration
	2.2 A modern swap declaration
	2.3 They're not quite the same

	3 Summary and conclusion
	4 Acknowledgments
	5 Bibliography
	6 Document history

